Nafion/石墨烯量子点修饰电极对重金属和氯霉素的电化学检测
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Electrochemical Detection of Heavy Metals and Chloramphenicol Based on Nafion/Graphene Quantum Dots Modified Electrode
  • 作者:许贺 ; 潘哲伦 ; 谢昱 ; 顾鑫锋 ; 柳建设
  • 英文作者:XU He;PAN Zhe-lun;XIE Yu;GU Xin-feng;LIU Jian-she;College of Environmental Science and Engineering,Donghua University;
  • 关键词:石墨烯量子点 ; 氯霉素 ; 修饰电极 ; 重金属 ; 示差脉冲伏安法
  • 英文关键词:Graphene quantum dots;;Chloramphenicol;;Modified electrode;;Heavy metals;;Differential pulse voltammetry
  • 中文刊名:FXKX
  • 英文刊名:Journal of Analytical Science
  • 机构:东华大学环境科学与工程学院;
  • 出版日期:2019-06-11 16:54
  • 出版单位:分析科学学报
  • 年:2019
  • 期:v.35
  • 基金:中央高校科研业务费专项基金(No.17D111310);; 上海市大学生创新创业训练项目(No.X171131706)
  • 语种:中文;
  • 页:FXKX201903002
  • 页数:7
  • CN:03
  • ISSN:42-1338/O
  • 分类号:12-18
摘要
本文采用简单的原位电解石墨棒方法,在一定的电流密度下成功制备出粒径均匀的石墨烯量子点(GQDs),并构建Nafion/GQDs修饰玻碳电极(Nafion/GQDs/GCE)。采用阳极溶出伏安法和示差脉冲伏安法分别应用于重金属Pb(Ⅱ)、Cd(Ⅱ)和氯霉素的电化学检测。研究结果表明,Pb(Ⅱ)和Cd(Ⅱ)的溶出电流随着他们浓度的增加而增加,并呈现良好的线性关系,Pb(Ⅱ)线性范围为4.82×10~(-8)~9.65×10~(-7)mol/L(R2=0.9923),Cd(Ⅱ)线性范围为1.07×10~(-7)~1.96×10~(-6) mol/L(R2=0.9912),所得Pb(Ⅱ)和Cd(Ⅱ)检出限分别为1.61×10~(-8) mol/L和3.57×10~(-8) mol/L。该Nafion/GQDs/GCE对氯霉素具有明显的电催化还原作用,电催化机理是6电子参与的不可逆反应,电子转移速率常数ks为105.4s-1。该修饰电极对氯霉素的催化还原电流与其浓度在5.00×10~(-7)~2.50×10~(-3) mol/L范围内呈良好的线性关系,检出限(S/N=3)为1.67×10~(-7) mol/L。该Nafion/GQDs/GCE还具有良好的抗干扰性、稳定性和重现性,对实际样品的检测取得满意的结果。
        In this paper,homogeneous graphene quantum dots(GQDs)were successfully prepared by a simple,environmental-friendly way of in-situ electrolyzing graphite rod at a certain current density.The GQDs were dispersed into Nafion solution,Nafion/GQDs composites modified glassy carbon electrode(Nafion/GQDs/GCE) was prepared. As-prepared Nafion/GQDs/GCE was studied for the electrochemical detection of Pb(Ⅱ),Cd(Ⅱ)and chloramphenicol by anodic stripping voltammetry and different pulse voltammetry,respectively.The results demonstrated that Nafion/GQDs/GCE had excellent electrochemical properties for the detection of Pb(Ⅱ),Cd(Ⅱ)and chloramphenicol.With the increase of Pb(Ⅱ)and Cd(Ⅱ)concentration,the anodic stripping currents of Pb(Ⅱ)and Cd(Ⅱ)were proportional to their concentrations in the linear range of 4.82×10~(-8)-9.65×10~(-7) mol/L(R2=0.9923)for Pb(Ⅱ)and 1.07×10~(-7)-1.96×10~(-6) mol/L for Cd(Ⅱ)(R2=0.9912).The detection limits(S/N=3)were 1.61×10~(-8) mol/L for Pb(Ⅱ)and 3.57×10~(-8) mol/L for Cd(Ⅱ),respectively.The chloramphenicol was also obviously electrochemically reduced at the Nafion/GQDs/GCE.The electrocatalytic mechanism of chloramphenicol was involved 6 electrons for an irreversible reaction,and the electron transfer rate constant was 105.4 s-1. The reduction current of chloramphenicol was also proportion to its concentration ranged from 5.00×10~(-7) to 2.50×10~(-3) mol/L,and the detection limit was 1.67×10~(-7) mol/L.Moreover,the Nafion/GQDs modified electrode exhibited good anti-interference,stability and reproducibility and it was successfully applied to detect targets in real samples with satisfactory results.
引文
[1]GB 5749-2006.Standards for Drinking Water Quality《生活饮用水卫生标准》.
    [2]Ullah N,Mansha M,Khan I,et al.Trends in Analytical Chemistry,2018,100:155.
    [3]Lu Y Y,Liang X Q,Niyungeko C,et al.Talanta,2018,178:324.
    [4]ZHOU H Y,CHEN J,WANG J J.Journal of Analytical Science(周惠燕,陈珏,王嘉俊.分析科学学报),2016,32(1):137.
    [5]Ding Y F,Zhang X,Yin H J,et al.Sensors,2017,17(12):2962.
    [6]ZHAO Q L,ZHANG Z Y.Journal of Analytical Science(赵秋伶,张振宇.分析科学学报),2014,30(4):517.
    [7]Zhai H Y,Liang Z X,Chen Z G,et al.Electrochimica Acta,2015,171:105.
    [8]Luo Y,Li M,Sun L,et al.Journal of Colloid and Interface Science,2018,529:205.
    [9]Zhang M,Bai L L,Shang W H,et al.Journal of Materials Chemistry,2012,22:7461.
    [10]Li Y,Hu Y,Zhao Y,et al.Advanced Materials,2011,23:776.
    [11]He X,Zeng L P,Huang D K,et al.Food Chemistry,2008,109:834.
    [12]TANG F J,ZHANG F,JIN Q H,et al.Chinese Journal of Analytical Chemistry(唐逢杰,张凤,金庆辉,等.分析化学),2013,41(2):278.
    [13]Chalupnisk A,Merkosi A.Applied Materials&Interfaces,2017,9:44766.
    [14]Sang S B,Li D,Zhang H,et al.RSC Advances,2017,7:21618.
    [15]Ruengpirasiri P,Punrat E,Chailapakul O,et al.Electroanalysis,2017,29:1022.
    [16]Borowiec J,Wang R,Zhu L H,et al.Electrochimica Acta,2013,99:138.
    [17]LUO S Z,ZHAO J L,CHEN H Y,et al.Journal of Analytical Science(罗世忠,赵金龙,陈怀银,等.分析科学学报),2016,32(4):561.
    [18]ZHAO X J,ZHANG Q M,CHEN H G,et al.Journal of Instrumental Analysis(赵晓娟,张其美,陈海光,等.分析测试学报),2016,35(7):849.
    [19]Sun Y F,Wei T T,Jiang M D,et al.Sensors and Actuators B:Chemical,2018,255:2155.
    [20]ZHANG J L,TAN X C,TAN S W,et al.Chinese Journal of Analysis Laboratory(张金磊,谭学才,谭生伟,等.分析试验室),2011,30(1):51.
    [21]Wang J,Deo,R P,Thongngamdee S,et al.Electroanalysis,2001,13,1153.
    [22]Banks C E,Kruusma R R,Moore P,et al.Talanta,2005,65:423.
    [23]Gao C,Yu X Y,Xu R X,et al.ACS Applied Materials&Interfaces,2012,4(9):4672.
    [24]Xu H,Zeng L P,Xing S J,et al.Electroanalysis,2008,24:2655.
    [25]Kefala G,Economou A,Voulgaropoulos A,Analyst,2004,129:1082.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700