激光能量密度对原位生成纳米石墨的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of laser energy density on in situ formation of nano-graphite
  • 作者:刘孝谦 ; 骆芳 ; 杜琳琳 ; 陆潇晓
  • 英文作者:Liu Xiaoqian;Luo Fang;Du Linlin;Lu Xiaoxiao;Institute of Laser Advanced Manufacturing, Zhejiang University of Technology;Zhejiang Provincial Collaborative Innovation Center of High-end Laser Manufacturing Equipment;College of Zhijiang, Zhejiang University of Technology;School of Materials and Environment Engineering, Hangzhou Dianzi University;
  • 关键词:纳米石墨 ; 激光辐照 ; 晶体结构 ; 微观形貌
  • 英文关键词:nano-graphite;;laser irradiation;;crystal structure;;microscopic morphology
  • 中文刊名:HWYJ
  • 英文刊名:Infrared and Laser Engineering
  • 机构:浙江工业大学激光先进制造研究院;浙江省高端激光制造装备协同创新中心;浙江工业大学之江学院;杭州电子科技大学材料与环境工程学院;
  • 出版日期:2019-02-01 09:03
  • 出版单位:红外与激光工程
  • 年:2019
  • 期:v.48;No.295
  • 基金:国家自然科学基金(51271170)
  • 语种:中文;
  • 页:HWYJ201905011
  • 页数:8
  • CN:05
  • ISSN:12-1261/TN
  • 分类号:79-86
摘要
研究了直径尺度为50μm的片状石墨,在不同激光能量密度的辐照下,原位生成纳米粒状石墨的微观结构及形貌,初步探讨了激光辐照参数与微米石墨原位生成纳米石墨之间的规律。采用高分辨透射电镜(HRTEM)、扫描电子显微镜(SEM)和X射线衍射(XRD)对制备的纳米石墨的晶体结构及显微形貌进行了测试、分析。试验结果表明:在激光能量密度为5.00 kJ/cm~2时,试样由微米片状石墨原位生成分散性较好的、平均粒径为245 nm的球状石墨;在激光能量密度提高到6.25 kJ/cm~2时,样品原位生成双向生长的椭球状石墨,有团聚现象产生,平均粒径为240 nm;在激光能量密度达到12.50 kJ/cm~2时,微米片状石墨转变成大量的球状石墨,平均粒径为61.5 nm;在激光能量密度继续增加到13.75 kJ/cm~2时,产物呈现小颗粒附着在大颗粒上的现象,粒径范围为150~500 nm,平均粒径达280 nm。
        The microstructure and morphology of nano-granular graphite in situ formed on 50 μm flake micro-graphite irradiated by different energy density laser were investigated. The rules between process parameters of laser irradiation and in situ formation of nano-graphite on micro-graphite were preliminarily discussed. The morphology and microstructure of samples were studied by scanning electron microscope(SEM), and the crystallinity and microstructure of samples were studied by high resolution transmission electron microscopy(HRTEM) and X-ray diffraction(XRD). The experimental results show that the flake micro-graphite is changed into a large number of spheroidal graphite whose average size is245 nm when the power density is 5.00 k J/cm~2. When the laser energy density reachs to 6.25 kJ/cm~2, the spherical graphite whose average size is 240 nm with agglomerate phenomenon is found. After the laser energy density increases to 12.50 kJ/cm~2, samples present as form of spherical particle whose average size is 61.5 nm. When the power density is 13.75 kJ/cm~2, the irradiated resultants of flake micro-graphite show a phenomenon that small particles attach to large particles, the size of irradiated resultants have a large range from 150 nm to 280 nm.
引文
[1] Yang Hua, Cao Yang, He Junhui, et al. Research progressing graphene-based infrared photodetectors[J].Laser&Optoelectronics Progress, 2015, 52(11):110003.(in Chinese)
    [2] Kirgiz M S. Advancements in mechanical and physical properties for marble powder-cement composites strengthened by nanostructured graphite particles[J].Mechanics of Materials, 2016, 92:223-234.
    [3] Sun Guilei. Preparation methods, mechanism and development of application of nano-graphite[J].Development and Application of Materials, 2011, 26(4):77-81.(in Chinese)
    [4] Du Shiguo, Shi Dongmei. The liquid phase synthesis technology of nanoparticles[J]. Powder Metallurgy Technology, 2000, 18(1):46-48.(in Chinese)
    [5] Welham N J, Berbenni V, Chapman P G. Effect of extended ball milling on graphite[J]. Journal of Alloys&Compounds, 2003, 349(1-2):255-263.
    [6] Wen Chao, Jin Zhihao, Guan Jinqing, et al. Preparation of nano-graphite powder by explosive detonation method[J]. Rare Metal Materials and Engineering,2004, 33(6):628-631.(in Chinese)
    [7] Chen G, Weng W, Wu D, et al. Preparation and characterization of graphite nanosheets from ultrasonic powdering technique[J]. Carbon, 2004, 42(4):753-759.
    [8] Chen Guohua, Wu Dajun, Ye Wei, et al. The stripping effect of electrochemical intercalation layer on the stone and molite[J]. New Carbon Materials, 1999, 14(4):59-62.(in Chinese)
    [9] Chen Suiyuan, Dong Weiguo, Liu Changsheng, et al.Preparation nano-graphite by pulsed laser deposition in liquid[J]. Journal of Northeastern University(Natural Science Edition), 2002, 23(11):1079-1082.(in Chinese)
    [10] Xing Xiao, Wang Wenjun, Li Shuhong, et al. Properties of TiO2fil ms deposited by pulsed laser deposition[J].Chinese Journal of Lasers, 2013, 40(2):0207001.(in Chinese)
    [11] Huang Yijie, Gao Xiangdong, Lin Shaoduo. Influences of laser welding parameters on mechanical properties of polymethyl methacrylate and stainless-steel joints[J].Chinese Journal of Lasers, 2017, 44(12):1202006.(in Chinese)
    [12] Liu Jiahe, Zhu Haihong, Hu Zhiheng, et al. Control of elevated edge in selective laser melt molding[J].Chinese Journal of Lasers, 2017, 44(12):1202007.(in Chinese)
    [13] Sun Chuguang, Liu Junhuan, Chen Zhiyong, et al.Titanium alloy laser cladding preparation of low silicon content of bioceramic coating on[J]. Infrared and Laser Engineering, 2018, 47(3):0306003.(in Chinese)
    [14] Sun Huajun, Hou Lisong, Wu Yiqun. et al. Laser induced change in the electrical and optical properties of amorphous Ge2Sb2Te5thi n films[J]. Journal of Inorganic Materials, 2008, 23(6):1111-1114.(in Chinese)
    [15] Du Chuanmei, Lv Lianghong, Zhang Mingxu. Preparation of gold nanoparticles by femtosecond laser ablation in chloroauric acid trihydrate aqueous solution[J]. Chinese Journal of Lasers, 2017, 44(8):0803003.(in Chinese)杜传梅,吕良宏,张明旭.飞秒激光烧蚀氯金酸水溶液制备金纳米粒子[J].中国激光, 2017, 44(8):0803003.
    [16] Cao Guozhong. Nanostructures and Nanomaterials:Synthesis, Properties and Applications[M]. Beijing:Higher Education Press, 2012.(in Chinese)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700