绿茶水热还原制备微纳米金属铜
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Hydrothermal synthesis of micro/nano metallic copper using green tea water as both solvent and reductant
  • 作者:叶榆 ; 张凯伦 ; 霍地
  • 英文作者:YE Yu;ZHANG Kailun;HUO Di;Key Laboratory for Anisotropic and Texture of Materials (Ministry of Education), Northeastern University;Institute of Ceramics and Powder Metallurgy, School of Materials Science and Engineering,Northeastern University;
  • 关键词:微尺度 ; 微纳米金属Cu ; 绿茶茶水 ; 水热 ; 晶体形貌 ; 绿色合成 ; 还原
  • 英文关键词:micro scale;;micro/nano metallic copper;;green tea water;;hydrothermal;;crystal morphology;;green synthesis;;reduction
  • 中文刊名:HGJZ
  • 英文刊名:Chemical Industry and Engineering Progress
  • 机构:东北大学材料各向异性与织构教育部重点实验室;东北大学材料科学与工程学院陶瓷与粉末冶金研究所;
  • 出版日期:2018-12-18 17:21
  • 出版单位:化工进展
  • 年:2019
  • 期:v.38;No.330
  • 语种:中文;
  • 页:HGJZ201903039
  • 页数:7
  • CN:03
  • ISSN:11-1954/TQ
  • 分类号:347-353
摘要
以绿茶茶水兼为溶剂和还原剂,采用水热法直接还原制备出不同形貌的微纳米金属Cu粉,同时研究了pH、茶水浓度(茶粉与水的质量比)、水热温度以及TiOSO4对微纳米Cu的相纯度和颗粒形貌的影响。研究结果表明:在pH=3~12、m(茶)∶m(H__2O)=1∶100,反应温度为200℃的条件下,均可得到聚集态的球状金属Cu;降低茶水的浓度或反应温度,产物中存在Cu和Cu_2O两相,且随着茶水浓度或反应温度的降低,产物中Cu_2O的相对含量均逐渐升高;另外,在一次水热合成获得的单相Cu_2O中加入0.1gTiOSO4并经过200℃、24h二次水热处理后,制备出长度为10~40μm、直径为0.4~0.9μm的一维棒状金属Cu。
        Micro/nano metallic Cu powders with different morphologies were prepared by hydrothermal method using green tea water as both solvent and reductant. The effects of pH, green tea concentration,hydrothermal temperature and TiOSO4 additive on the phase purity and particle morphology of the micro/nano Cu were also investigated. The results show that pure Cu powders with nearly spherical shape could be obtained under the conditions of pH=3—12, the mass ratio of tea to water as 1∶100 and temperature of 200℃. When the ratio of tea to water or the reaction temperature was decreased, two phases of Cu and Cu_2O would form, and the relative content of Cu_2O in the product gradually increased. Additionally, using the pure Cu_2O powders which were obtained by performing the first hydrothermal process as the starting material, one-dimensional metallic Cu rods with a length of 10—40μm and a diameter of 0.4—0.9μm were obtained after a second hydrothermal processing at 200℃ for 24 h with additive of 0.1 g TiOSO4.
引文
[1]DONG L,YAO XJ,CHEN Y.Interactions among supported copperbased catalyst components and their effectson performance:a review[J].Chinese Journal of Catalysis,2013,34(5):851-864.
    [2]刘晓琴,苏晓磊.铜电子浆料的研究发展现状[J].硅酸盐通报,2013,32(12):2502-2507.LIU Xiaoqin,SU Xiaolei.Research progress and developments of conductive copper paste[J].Bulletin of the Chinese Ceramic Society,2013,32(12):2502-2507.
    [3]叶楠敏,程继贵,陈闻超,等.凝胶浇注法制备的纳米铜粉在导电胶中的应用[J].中国有色金属学报,2015,25(5):1264-1269.YE Nanmin,CHENG Jigui,CHEN Wenchao,et al.Application of nano-sized copper powders prepared by gel-casting method in conductive adhesives[J].The Chinese Journal of Nonferrous Metals,2015,25(5):1264-1269.
    [4]于鹤龙,许一,王晓丽,等.纳米铜润滑油添加剂的制备及其性能研究[J].中国有色金属学报,2006,20(5):86-89.YU Helong,XU Yi,WANG Xiaoli,et al.Research on the preparation and properties of Cu nanoparticles lubricant addictive[J].The Chinese Journal of Nonferrous Metals,2006,20(5):86-89.
    [5]WEI Y H,CHEN S,KOWALCZYK B,et al.Synthesis of stable,lowdispersity copper nanoparticles and nanorods and their antifungal and catalytic properties[J].J.Phys.Chem.C,2010,114:15612-15616.
    [6]CHEN Z,RATHMELL A R,YE S,et al.Optically transparent water oxidation catalysts based on copper nanowires[J].Angew.Chem.:Int.Edit.,2013,52:13708-13711.
    [7]ALIA S M,JENSEN K,CONTRERAS C,et al.Platinum coated copper nanowires and platinum nanotubes as oxygen reduction electrocatalysts[J].ACS Catal.,2013,3:358-362.
    [8]ZHAO Y X,ZHANG Y,LI Y,et al.Rapid and large-scale synthesis of Cu nanowires via a continuous flowsolvothermal process and its application in dye-sensitized solar cells(DSSCs)[J].RSC Adv.,2012,2:11544-11551.
    [9]STEWART I E,RATHMELL A R,YAN L,et al.Solution-processed copper-nickel nanowire anodes for organic solar cells[J].J.Nanoscale,2014,6:5980-5988.
    [10]WU J H,ZANG J F,RATHMELL A R,et al.Reversible sliding in networks of nanowires[J].Nano Lett.,2013,13(6):2381-2386.
    [11]WANG S L,CHENG Y,WANG R R,et al.Highly thermal conductive copper nanowire composites with ultralow loading:toward applications as thermal interface materials[J].ACS Appl.Mater.Inter.,2014,6(9):6481-6486.
    [12]YABUKI A,ARRIFFIN N,YANASE M.Low-temperature synthesis of copper conductive film bythermal decomposition of copperaminecomplexes[J].Thin Solid Films,2011,519(19):6530-6533.
    [13]李双明,刘慧,于三三,等.柠檬酸溶胶-凝胶法制备纳米铜[J].中国粉体技术,2013,19(6):49-53.LI Shuangming,LIU Hui,YU Sansan,et al.Preparation ofcopper nanoparticles by citratesol-gel process[J].China Powder Science and Technology,2013,19(6):49-53.
    [14]CHOI H,PARK S H.Seedless growth of free-standing copper nanowires by chemical vapor deposition[J].J.Am.Chem.Soc.,2004,126(20):6248-6249.
    [15]GEREIN N J,HABER J A.Effect of ac electrodeposition conditions on the growth of high aspect ratio copper nanowires in porous aluminum oxide templates[J].J.Phys.Chem.B,2005,109(37):17372-17385.
    [16]GELVES G A,MURAKAMI Z T M,KRANTZ M J,et al.Multigram synthesis of copper nanowires using AC electrodeposition into porous aluminium oxide templates[J].J.Mater.Chem.,2006,16:3075-3083.
    [17]TANG Y,GONG S,CHEN Y,et al.Manufacturable conducting rubber ambers and stretchable conductors from copper nanowire aerogel monoliths[J].ACS Nano,2014,8(6):5707-5714.
    [18]MENG F,JIN S.The solution growth of copper nanowires and nanotubes is driven by screw dislocations[J].Nano Lett.,2012,12(1):234-239.
    [19]JUNG D,KO Y H,CHO J,et al.Transparent and flexible conducting hybrid film combined with 3-aminopropyltriethoxysilane-coated polymer and graphene[J].Appl.Surf.Sci.,2015,357:287-292.
    [20]CHANG Y,LYE M L,ZENG H C.Large-scale synthesis of highquality ultralong copper nanowires[J].Langmuir,2005,21(9):3746-3748.
    [21]ZHANG Q L,YANG Z M,DING B J,et al.Preparation of copper nanoparticles by chemical reduction method using potassium borohydride[J].Transactions of Nonferrous Metals Society China,2012,20(s1):s240-s244.
    [22]LI S,CHEN Y,HUANG L,et al.Large-scale synthesis of welldispersed copper nanowires in an electric pressure cooker and their application in transparent and conductive networks[J].Inorg.Chem.,2014,53(9):4440-4444.
    [23]SHI Y,LI H,CHEN L,et al.Obtaining ultra-long copper nanowires via ahydrothermalprocess[J].Sci.Technol.Adv.Mat.,2005,6:761-765.
    [24]黄培强,高景星.绿色合成:一个逐渐形成的学科前沿[J].化学进展,1998,10(3):265-272.HUANG Peiqiang,GAO Jingxing.Green synthesis:a forming frontier of science[J].Progress in Chemistry,1998,10(3):265-272.
    [25]PERIASAMY A P,LIU J,LIU H M,et al.Synthesis of copper nanowire decorated reduced graphene oxide for electro-oxidation of methanol[J].J.Mater Chem.A,2013,1:5973-5981.
    [26]ZAHEER KHAN S H.Epigallocatechin-3-gallate-capped Ag nanoparticles:preparation and characterization bioprocess[J].Biosyst.Eng.,2014(37):1221-1231.
    [27]NADAGOUDA M N,VARMA R S.Green synthesis of silver and palladium nanoparticles at room temperature using coffeeand tea extract[J].Green Chem.,2008,10:859-862.
    [28]GOODMAN B A,SEVERINO J F,PIRKER K F.Reactions of green and black teas with Cu(II)[J].Food Funct.,2012,3:399-409.
    [29]MIAO W F,LIU H R,ZHANG Z M,et al.Large-scale growth and shape evolution of micrometer-sized Cu2O cubes withconcave planes viaγ-irradiation[J].Solid State Sciences,2008,10:1322-1326.
    [30]闫冬,谭子仪,叶蕾蕾,等.钴离子和氢离子共掺杂聚苯胺的形貌可控制备与电化学性能[J].高分子材料科学与工程,2017,33(4):52-57.YAN Dong,TAN Ziyi,YE Leilei,et al.The morphology of polyaniline co-doped with cobalt ions and hydrogen ions can control the preparation and electrochemical properties[J].Polymer Materials Science&Engineering,2017,33(4):52-57..
    [31]朱清,张哲娟,孙卓,等.控制剂中金属离子对制备高纯高产纳米银线的影响[J].材料科学与工程学报,2016,6(1):1-7.ZHU Qing,ZHANG Zhejuan,SUN Zhuo,et al.Effect of metal ions in control agents on preparation of high purity and high yield nanosilver[J].Journal of Materials Science and Engineering,2016,6(1):1-7.
    [32]WANG N,TANG Y H,ZHANG Y F,et al.Nucleation and growth of Si nanowires from silicon oxide[J].Physical Review B,1998,58(24):R16024-R16026.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700