旋流雾化排液采气工艺及其关键参数
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Cyclone atomization based drainage gas recovery technology and its key parameters
  • 作者:薛承文 ; 谢文强 ; 高涵 ; 池明 ; 张国红 ; 郭玲 ; 薛亮
  • 英文作者:Xue Chengwen;Xie Wenqiang;Gao Han;Chi Ming;Zhang Guohong;Guo Ling;Xue Liang;Engineering Technology Research Institute,Petro China Xinjiang Oilfield Company;Zhundong Production Plant,Petro China Xinjiang Oilfield Company;China University of Petroleum;
  • 关键词:旋流 ; 雾化 ; 井底积液 ; 排液采气 ; 配套工具 ; 临界流速 ; 生产管柱 ; 外部能量 ; 中国石油新疆油田公司
  • 英文关键词:Cyclone;;Atomizing,Bottom hole liquid loading;;Drainage gas recovery;;Matching tools;;Critical flow rate;;Production string;;External energy;;Petro China Xinjiang Oilfield Company
  • 中文刊名:TRQG
  • 英文刊名:Natural Gas Industry
  • 机构:中国石油新疆油田公司工程技术研究院;中国石油新疆油田公司准东采油厂;中国石油大学(北京);
  • 出版日期:2018-06-25
  • 出版单位:天然气工业
  • 年:2018
  • 期:v.38;No.296
  • 基金:中国石油天然气股份有限公司重大科技专项“新疆油田和吐哈油田勘探开发关键技术研究与应用”(编号:2017E-0410)
  • 语种:中文;
  • 页:TRQG201806016
  • 页数:7
  • CN:06
  • ISSN:51-1179/TE
  • 分类号:82-88
摘要
气水同产井在生产过程中,由于地层能量逐渐下降易产生井底积液,严重影响了气井的产能,甚至会造成气井水淹停产,常用的排液采气工艺需要借助外部能量或更换生产管柱,工艺运行成本高。为此,以Turner模型为理论基础,设计了旋流雾化装置将井底积液雾化为细小的液滴,以便容易被携带出气井井筒;进而开展旋流雾化数值模拟、室内可视化实验及现场试验确定旋流雾化排液采气工艺关键技术参数。研究结果表明:(1)实施旋流雾化排液采气工艺使气井能够在不增加外部能量的条件下将井底积液排出,实现气井的连续携液生产;(2)该工艺具有对气井凝析油含量不敏感、作业方便、生产成本低及装置工作可靠性高等优点;(3)旋流雾化排液采气工艺关键技术参数为:最大下入井深4 200 m,工作温度120℃,气井气液比大于1 100 m~3/m~3、产液量小于20 m~3/d,工具外径58 mm或72 mm;(4)两口井现场应用效果好:水淹气井滴西17井成功复产并实现连续携液生产,大直径油管完井的K82006井携液良好且气井产气量稳定。结论认为,旋流雾化排液采气工艺作为一种不动原井生产管柱、不增加外部能量的排液采气工艺,值得推荐。
        During the production of a gas/water producing well, liquid tends to accumulate easily at the bottom hole due to the gradual decline of formation energy. And consequently, the productivity of the gas well is seriously impacted and the gas well may be even watered out and shut down. The operation cost of commonly used drainage gas recovery technologies is high, for they need the external energy or the replacement of original production string. In this paper, a cyclone atomizer was designed on the basis of the Turner model. By virtue of the cyclone atomizer, the liquid accumulated at the bottom hole is atomized into fine droplets, so that they can be carried out of the hole easily. Then, numerical simulation, laboratory visual tests and field tests were carried out to determine the key technological parameters of a cyclone atomization based drainage gas recovery process. And the following research results were obtained. First, with the application of this technology, bottom hole liquid loading is drained out of a gas well without any addition of external energy, making continuous liquid-carrying production possible. Second, this technology is advantageous with insensitivity to condensate content of a gas well, convenient operation, low production cost and reliable device. Third, the key technological parameters of the cyclone atomization based drainage gas recovery process are as follows. The maximum setting depth: 4 200 m; operation temperature: 120 ℃; gas/liquid ratio: more than 1 100 m~3/m~3; liquid producing rate: less than 20 m~3/d; and tool OD: 58 mm or 72 mm. Fourth, this technology has been successfully applied in 2 gas wells. Well Dixi 17, a watered gas well recovered to production successfully with continuous liquid-carrying production. Well K82006 which was completed with large-diameter tubings presented a good liquid-carrying capacity and stable gas production rates. In conclusion, the cyclone atomization based drainage gas recovery technology is worth recommending, which keeps the original production string without any addition of external energy.
引文
[1]杨继盛.采气工艺基础[M].北京:石油工业出版社,1992.Yang Jisheng.Basis of gas extraction process[M].Beijing:Petroleum Industry Press,1992.
    [2]李士伦.天然气工程[M].北京:石油工业出版社,2000.Li Shilun.Natural gas engineering[M].Beijing:Petroleum Industry Press,2000.
    [3]陈炽彬,张万兵.海上边际气田水下井口排水采气工艺技术[J].天然气工业,2016,36(2):66-71.Chen Chibin&Zhang Wanbing.Gas recovery technology by water drainage at subsea wellheads in offshore marginal gas fields[J].Natural Gas Industry,2016,36(2):66-71.
    [4]曹光强,李文魁,姜晓华.涩北气田整体治水思路探讨[J].西南石油大学学报(自然科学版),2014,36(2):114-120.Cao Guangqiang,Li Wenkui&Jiang Xiaohua.Study on the comprehensive water control methods in Sebei gas field[J].Journal of Southwest Petroleum University(Science&Technology Edition),2014,36(2):114-120.
    [5]关密生,王如平.采气井超声波雾化排液原理探讨[J].石油钻采工艺,1998,20(2):94-96.Guan Misheng&Wang Ruping.Exploration of ultrasonic wave atomization draining principle in gas producing well[J].Oil Drilling&Production Technology,1998,20(2):94-96.
    [6]葛东文,马春波.超声排水采气研究[J].内蒙古石油化工,2006(10):19-21.Ge Dongwen&Ma Chunbo.Research on ultrasonic drainage gas extraction[J].Inner Mongolia Petrochemical Industry,2006(10):19-21.
    [7]Turner RG,Hubbard MG&Dukler AE.Analysis and prediction of minimum flow rate for the continuous removal of liquids from gas wells[J].JPT,1969,21(11):75-82.
    [8]赵哲军,刘通,许剑,朱江,杨逸.气井稳定携液之我见[J].天然气工业,2015,35(6):59-63.Zhao Zhejun,Liu Tong,Xu Jian,Zhu Jiang&Yang Yi.Stable fluid-carrying capacity of gas wells[J].Natural Gas Industry,2015,35(6):59-63.
    [9]何玉发,李紫晗,张滨海,高飞,李莹莹.深水气井测试临界携液条件的优化设计[J].天然气工业,2017,37(9):63-70.He Yufa,Li Zihan,Zhang Binhai,Gao Fei&Li Yingying.Design optimization of critical liquid-carrying condition for deepwater gas well testing[J].Natural Gas Industry,2017,37(9):63-70.
    [10]潘杰,王武杰,魏耀奇,陈军斌,王亮亮.考虑液滴形状影响的气井临界携液流速计算模型[J].天然气工业,2018,38(1):67-73.Pan Jie,Wang Wujie,Wei Yaoqi,Chen Junbin&Wang Liangliang.A calculation model of critical liquid-carrying velocity of gas wells considering the influence of droplet shapes[J].Natural Gas Industry,2018,38(1):67-73.
    [11]耿新中.气井携液机理与临界参数研究[J].天然气工业,2018,38(1):74-80.Geng Xinzhong.Mechanism and critical parameters of liquid-carrying behaviors in gas wells[J].Natural Gas Industry,2018,38(1):74-80.
    [12]梁荣,党新安,赵小娟.超声波雾化喷嘴的设计[J].上海有色金属,2006,27(4):14-17.Liang Rong,Dang Xin'an&Zhao Xiaojuan.Research on design of ultrasonic atomizer[J].Shanghai Nonferrous Metals,2006,27(4):14-17.
    [13]王晓倩,张德生,赵继云,张子荣.雾化喷嘴及其设计浅析[J].煤矿机械,2008,29(3):15-17.Wang Xiaoqian,Zhang Desheng,Zhao Jiyun&Zhang Zirong.Analysis on spraying nozzle and design[J].Coal Mine Machinery,2008,29(3):15-17.
    [14]李明忠,赵国瑞.基于有限元仿真分析的高压雾化喷嘴设计及参数优化[J].煤炭学报,2015,40(增刊1):279-281.Li Mingzhong&Zhao Guorui.High pressure spray nozzle design and parameter optimization based on finite element simulation analysis[J].Journal of China Coal Society,2015,40(S1):279-281.
    [15]李虎,李增亮.井下排水采气用雾化喷嘴的数值仿真研究[J].石油机械,2009,37(8):18-20.Li Hu&Li Zengliang.Digital simulation research on the downhole atomized nozzle for dewatering gas recovery[J].China Petroleum Machinery,2009,37(8):18-20.
    [16]李振祥,郭志辉,车俊龙,付宇.一种强剪切空气雾化喷嘴的流场和喷雾[J].航空动力学报,2014,29(11):2704-2709.Li Zhenxiang,Guo Zhihui,Che Junlong&Fu Yu.Flow field and spray of a high shear air-blast nozzle[J].Journal of Aerospace Power,2014,29(11):2704-2709.
    [17]刘昌波,周立新,雷凡培.雾化过程的数值模拟研究综述[J].火箭推进,2014,40(1):10-17.Liu Changbo,Zhou Lixin&Lei Fanpei.Overview on numerical simulations of primary atomization[J].Journal of Rocket Propulsion,2014,40(1):10-17.
    [18]田昌,胡晓红,赵志军.压力式喷嘴雾化特性测定实验装置[J].实验技术与管理,2017,34(10):75-77.Tian Chang,Hu Xiaohong&Zhao Zhijun.Experimental device for measuring atomization characteristics of pressure nozzle[J].Experimental Technology and Management,2017,34(10):75-77.
    [19]周俊虎,周林华,杨卫娟,卢志民,刘建忠,岑可法.新型扇形雾化喷嘴的实验研究[J].过程工程学报,2007,7(4):652-656.Zhou Junhu,Zhou Linhua,Yang Weijuan,Lu Zhimin,Liu Jianzhong&Cen Kefa.Experimental study on a new-type of fanshaped spray atomizer[J].The Chinese Journal of Process Engineering,2007,7(4):652-656.
    [20]龚景松,傅维镳.“旋转型气—液雾化喷嘴”流量特性的实验研究[J].热能动力工程,2004,19(4):376-379.Gong Jingsong&Fu Weibiao.Experimental investigation of the flow characteristics of a swirl-type gas-liquid atomization spray nozzle[J].Journal of Engineering for Thermal Energy and Power,2004,19(4):376-379.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700