不同管理模式下干旱草地粒度特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Particle Size Distribution Characteristics of Arid Grassland Under Different Management Modes
  • 作者:郄亚栋 ; 杨建军 ; 孙华斌 ; 何学敏 ; 吕光辉
  • 英文作者:QIE Yadong;YANG Jianjun;SUN Huabin;HE Xuemin;LV Guanghui;Institute of Resources and Environment Science, Xinjiang University;Key Laboratory of Oasis Ecology, Ministry of Education;Grassland Station of Fuyun County;Research Institute of Arid Ecological Environment, Xinjiang University;
  • 关键词:土壤粒径分布 ; 草地管理 ; 干旱草地 ; 质地三角 ; 分形分析
  • 英文关键词:Soil particle size distribution(PSD);;Grassland management;;Arid grassland;;Texture triangle;;Fractal analysis
  • 中文刊名:TURA
  • 英文刊名:Soils
  • 机构:新疆大学资源与环境科学学院;绿洲生态教育部重点实验室;新疆富蕴县草原站;新疆大学干旱生态环境研究所;
  • 出版日期:2017-12-15
  • 出版单位:土壤
  • 年:2017
  • 期:v.49;No.292
  • 基金:国家科技支撑计划项目(2014BAC15B04)资助
  • 语种:中文;
  • 页:TURA201706026
  • 页数:11
  • CN:06
  • ISSN:32-1118/P
  • 分类号:180-190
摘要
土壤粒径分布及空间变化对土壤溶质和水盐运移、土壤肥力状况等有重要意义,是土壤重要物理特性之一。基于新疆准噶尔北部、阿勒泰山南麓不同管理模式下的草地(荒漠草地、天然草地、弃耕草地、季节草地和禁牧草地),运用质地分类和分形理论探讨草地粒度特征。结果发现:研究区土壤颗粒中黏粒含量最低,最小值仅有0.17g/kg,砂粒含量最高,最大值可达900.37 g/kg,粒径分布呈现单峰特征,表明土壤发育较差;砂粒和粉粒含量之间呈极显著负相关关系,相关系数为0.999 8(P<0.01),推测成土母质和地域差异导致土壤中砂粒和粉粒几乎占了全部;荒漠草地、天然草地和弃耕草地黏粒含量的平均值随着土层深度增加而减小,呈现出负相关特征,而季节草地和禁牧草地并无此特征;荒漠草地的分形维数D值最大,可能是因为灌木作为该生态系统中的优势植物,能有效地减缓荒漠草地逆向演替和消亡的进程,对土壤颗粒具有一定的细化作用;所有土壤样品分形维数D与黏粒含量均具有较强相关性,天然草地、荒漠草地和弃耕草地的分形维数D分别与粉粒和砂粒含量的相关性较强,与禁牧和季节草地的相关性较差,说明春、秋轮牧对土壤的干扰可能超过了土壤本身承载能力,对土壤颗粒组成破坏比较大,影响了土壤发育,放牧向禁牧转化时期的长短可能决定了土壤的发育是否良好。
        As one of the important physical properties of soil, particle size distribution(PSD) and spatial variation is of great significance not only to the transport of soil solute, water and salt, but also to soil fertility status and so on. Based on the grasslands(desert grassland, natural grassland, abandoned grassland, seasonal grassland and forbidden grassland) under the different management modes in the northern Junggar and southern Altay Mountains, the texture classification and fractal theory were used to study PSD characteristics of grasslands. The results showed that clay content in the study area was the lowest with the minimum value of only 0.17 g/kg while sand content was the highest with the maximum value of 900.37 g/kg; PSD showed a single peak, indicating that the soil is poorly developed; silt and sand contents showed significant negative correlation with the correlation coefficient of 0.999 8(P<0.01), suggesting that soil parent material and geographical differences lead to sand and silt particles almost accounted all of the soils. Mean clay content decreased with the increase of soil depth in desert grassland, natural grassland, and abandonment grassland, while no such tendency was found in the seasonal grassland and forbidding grazing grassland. The fractal dimension of D in desert grassland is the highest, which may be because the shrubs, as dominant plants in the ecosystem, can effectively slow down the process of reverse succession and extinction and had a certain effect in the accumulation of fine particles; Fractal dimension D had significant correlation with and clay content of all soils and with silt and sand contents of desert grassland, natural grassland, and abandonment grassland, whereas not with those of seasonal grassland and forbidding grazing grassland. The above results showed that the interference of spring and autumn grazing on soil may exceed soil bearing capacity, damage largely soil particles and hinder soil development, and the length of grazing transforming into prohibition may determine whether the development of the soil is good or not.
引文
[1]任继周,梁天刚,林慧龙,等.草地对全球气候变化的响应及其碳汇潜势研究[J].草业学报,2011,20(2):1–22
    [2]王忆慧,龚吉蕊,刘敏,等.草地利用方式对土壤呼吸和凋落物分解的影响[J].植物生态学报,2015,39(3):239–248
    [3]李文,曹文侠,刘皓栋,等.不同放牧管理模式对高寒草甸草原土壤呼吸特征的影响[J].草业学报,2015,24(10):22–32
    [4]Zhou H K,Zhao X Q,Wen J,et al.The characteristics of soil and vegetation of degenerated alpine steppe in the Yellow River Source Region[J].Acta Prataculturae Sinica,2012,21(5):1–11
    [5]Sainju U M,Singh B P,Whitehesd W F.Long-term effects of tillage,cover crops,and nitrogen fertilization on organic carbon and nitrogen concentrations in sandy loam soils in Georgia,USA[J].Soil&Research,2002,63(3):167–179
    [6]KotzéE,Sandhage-Hofmann A,Meinel J A,et al.Rangeland management impacts on the properties of clayey soils along grazing gradients in the semi-arid grassland biome of South Africa[J].Journal of Arid Environments,2013,97(12):220–229
    [7]郑晓翾,王瑞东,靳甜甜,等.呼伦贝尔草原不同草地利用方式下生物多样性与生物量的关系[J].生态学报,2008,28(11):5392–5400
    [8]彭琴,董云社,齐玉春.氮输入对陆地生态系统碳循环关键过程的影响[J].地球科学进展,2008,23(8):874–882
    [9]Mu S J,Yang H F,Li J L,et al.Spatio-temporal dynamics of vegetation coverage and its relationship with climate factors in Inner Mongolia,China[J].Journal of Geographical Sciences,2013,23(2):231–246
    [10]茹豪,张建军,李玉婷,等.黄土高原土壤粒径分形特征及其对土壤侵蚀的影响[J].农业机械学报,2015,46(4):176–182
    [11]Huang G H,Zhang R D.Evaluation of soil water retention curve with the pore-solid fractal model[J].Geoderma,2005,127(1):52–61
    [12]Montero E.Rényi dimensions analysis of soil particle-size distributions[J].Ecological Modelling,2005,182(3/4):305–315
    [13]杜海燕,周智彬,刘凤山,等.绿洲化过程中阿拉尔垦区土壤粒径分形变化特征[J].干旱区研究,2013,30(4):615–622
    [14]王展,张玉龙,张良,等.冻融作用对土壤微团聚体特征及分形维数的影响[J].土壤学报,2013,50(1):86–91
    [15]Perfect E,Kay B D.Fractal theory applied to soil aggregation[J].Soil Science Society of America Journal,1991,55(6):1552–1558
    [16]王国梁,周生路,赵其国,等.土壤颗粒的体积分形维数及其在土地利用中的应用[J].土壤学报,2005,42(4):545–550
    [17]Millán H,González-Posada M,Aguilar M,et al.On the fractal scaling of soil data-Particle size distributions[J].Geoderma,2003,117(1/2):117–128
    [18]Prosperini N,Perugini D.Particle size distributions of some soils from the Umbria Region(Italy):Fractal analysis and numerical modelling[J].Geoderma,2008,145(3):185–195
    [19]Caruso T,Kathryn Barto E,Rezaul Karim Siddiky M,et al.Are power laws that estimate fractal dimension a good descriptor of soil structure and its link to soil biological properties?[J].Soil Biology&Biochemistry,2011,43(2):359–366
    [20]Ahmadi A,Neyshabouri M,Rouhipour H,et al.Fractal dimension of soil aggregates as an index of soil erodibility[J].Journal of Hydrology,2011,400(3/4):305–311
    [21]Song X Y,Yan M D,Li H Y.Fractal characteristics of soil particle-size distributions under different landform and land-use types in the loess gully region[J].Journal of Food,Agriculture&Environment,2013,11(3/4):2726–2729
    [22]Jin Z,Dong Y S,Qi Y C,et al.Characterizing variations in soil particle-size distribution along a grass–desert shrub transition in the Ordos plateau of Inner Mongolia,China[J].Land degradation&development,2013,24(2):141–146
    [23]林俊杰,杨振宇,刘丹,等.干湿交替下三峡支流消落带沉积物粒径组成及氮分布特征[J].土壤学报,2016,53(3):602–610
    [24]Rodríguez-Lado L,Lado M.Relation between soil forming factors and scaling properties of particle size distributions derived from multifractal analysis in topsoils from Galicia(NW Spain)[J].Geoderma,2017,287:147–156
    [25]刘虎,易春艳,魏永福.北疆地区阿克达拉灌区土壤成因和特性特征分析[J].中国农学通报,2014,30(33):212–218
    [26]Tyler S W,Wheatcraft S W.Fractal scaling of soil particle-size distributions:Analysis and limitations[J].Soil Science Society of America Journal,1992,56(2):362–369
    [27]Martin M A,Montero E.Laser diffraction and multi-fractal analysis for the characterization of dry soil volume-size distributions[J].Soil&Tillage Research,2002,64(1):113–123
    [28]Montero E,Martín Má.H?lder spectrum of dry grain volume-size distributions in soil[J].Geoderma,2003,112(3/4):197–204
    [29]Rousseva S S.Data transformations between soil texture schemes[J].European Journal of Soil Science,1997,48(4):749–758
    [30]季方,樊自立,赵虎.塔里木盆地冲积新成土土壤质地对土壤形状的影响[J].土壤,1999,31(3):126–131
    [31]黄昌勇.土壤学[M].北京:中国农业出版社,2000:75–76
    [32]Jiao S Y,Zhang M,Wang Y M,et al.Variation of soil nutrients and particle size under different vegetation types in the Yellow River Delta[J].Acta Ecologica Sinica,2014,34(3):148–153
    [33]胡宏昌,田富强,胡和平.新疆膜下滴灌土壤粒径分布及与水盐含量的关系[J].中国科学:技术科学,2011,41(8):1035–1042
    [34]魏茂红,林慧龙.江河源区高寒草甸退化序列土壤粒径分布及其分形维数[J].应用生态学报,2014,25(3):679–686
    [35]Wang D,Fu B J,Zhao W W,et al.Multifractal characteristics of soil particle size distribution under different land-use types on the Loess Plateau,China[J].Catena,2008,72(1):29–36
    [36]Skaggs T H,Arya L M,Shouse P J,et al.Estimating particle-size distribution from limited soil texture data[J].Soil Science Society of America Journal,2001,65(4):1038–1044
    [37]Hwang S I,Lee K P,Lee D S,et al.Models for estimating soil particle-size distributions[J].Soil Science Society of America Journal,2002,66(4):1143–1150
    [38]王德,傅伯杰,陈利项,等.不同土地利用类型下土壤粒径分形分析——以黄土丘陵沟壑区为例[J].生态学报,2007,27(7):3081–3089
    [39]Tian J Q,Zhou Z Y,Bao B,et al,Variations of soil particle size distribution with land-use types and influences on soil organic carbon and nitrogen[J].Journal of Plant Ecology,2008,32(3):601–610
    [40]许文强,罗格平,陈曦,等.干旱区绿洲不同土地利用方式和强度对土壤粒度分布的影响[J].干旱区地理,2005,28(6):800–804
    [41]Weltzin J F,Coughenour M B.Savanna tree influence on understory vegetation and soft nutrients in north-western Kenya[J].Journal of Vegetation Science,1990,1(3):325–334
    [42]胡宏昌,王根绪,王一博,等.江河源区典型多年冻土和季节冻土区水热过程对植被盖度的响应[J].科学通报,2009,54(2):242–250
    [43]王俊峰,王根绪,王一博,等.青藏高原沼泽及高寒草甸生长期内CO2排放[J].兰州大学学报·自然科学版,2007,43(5):17–23
    [44]张成霞,南志标.放牧对草地土壤理化特性影响的研究进展[J].草业学报,2010,19(4):204–211
    [45]林慧龙,龙瑞军,任继周.放牧侵蚀研究回顾与展望[J].生态学杂志,2008,27(12):2222–2227
    [46]Su Y Z,Zhao H L,Wen H Y.Cultivation and enclosure effects on soil physicochemical properties of degraded sandy grassland[J].Journal of Soil Water Conservation,2002,16(4):5–8
    [47]Wang X D,Li M H,Liu S Z,et al.Fractal characteristics of soils under different land-use patterns in the arid and semiarid regions of the Tibetan Plateau,China[J].Geoderma,2006,134(1-2):56–61
    [48]李勇,张晴雯,李璐,等.植物根系强化黄土土层化学风化速率的作用[J].水土保持学报,2005,19(1):5–9
    [49]Lobe L,Amelung W,Preez D C,et al.Losses of carbon and nitrogen with prolonged arable cropping from sandy soils of the South African Highveld[J].European Journal of Soil Science,2001,52(1):93–101
    [50]俞海生,李宝军,张宝文,等.灌木林主要生态作用的探讨[J].内蒙古林业科技,2003,4:15–18

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700