温带荒漠植物叶片功能性状对土壤水盐的响应
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Response ofPlant Leaf Functional Traits to Soil Aridity and Salinity in Temperate Desert Ecosystem
  • 作者:郄亚栋 ; 蒋腊梅 ; 吕光辉 ; 杨晓东 ; 王恒方 ; 滕德雄
  • 英文作者:QIE Yadong;JIANG Lamei;LV Guanghui;YANG Xiaodong;WANG Hengfang;TENG Dexiong;Institute of Arid Ecology and Environment, Xinjiang University;Key Laboratory of Oasis Ecology;College of Resources and Environment Science, Xinjiang University;
  • 关键词:干旱区 ; 生长型 ; 植物群落 ; 叶片功能性状 ; 水盐梯度
  • 英文关键词:arid area;;growth forms;;plant community;;leaf functional traits;;water and salt gradient
  • 中文刊名:TRYJ
  • 英文刊名:Ecology and Environmental Sciences
  • 机构:新疆大学干旱生态环境研究所;绿洲生态教育部重点实验室;新疆大学资源与环境科学学院;
  • 出版日期:2018-11-18
  • 出版单位:生态环境学报
  • 年:2018
  • 期:v.27
  • 基金:国家自然科学基金项目(31560131)
  • 语种:中文;
  • 页:TRYJ201811004
  • 页数:11
  • CN:11
  • ISSN:44-1661/X
  • 分类号:24-34
摘要
植物叶片功能性状与环境因子的关系一直倍受关注。以艾比湖湿地国家自然保护区荒漠林为研究对象,布设5条30m×3 000m样带,设置30个样方,并沿土壤水分(4.20%±0.57%)、(9.69%±1.95%)、(17.59%±0.83%)和盐分(3.45±0.46)、(4.72±0.74)、(6.42±0.35)g·kg-1环境梯度系统测量了群落中植物的4种叶片性状,包括叶面积、叶厚度、比叶面积和叶绿素含量等,试图寻找干旱和盐渍化双重胁迫下物种、生活型和群落3种水平上叶片功能性状的调整策略,并对是否出现策略响应现象作出可能解释。结果表明,(1)物种水平上,只有花花柴(Karelinia caspica)和罗布麻(Apocynum venetum)的叶绿素含量与土壤盐分表现出显著线性关系,前者为正相关关系(P<0.05),后者为负相关关系(P<0.01);所有植物叶片厚度与土壤水分、盐分和水盐比均无显著线性关系(P>0.05);罗布麻和白刺(Nitraria schoberi)的叶片面积与土壤水分和水盐比均呈显著负相关关系(P<0.05),多枝柽柳(Tamarix ramosissima)与土壤盐分有显著正相关关系(P<0.05);芦苇(Phragmites australis)、白刺、梭梭(Haloxylon ammodendron)和胡杨(Populus euphratica)的比叶面积与土壤水分和土壤水盐比之间有显著正相关关系(P<0.05)。说明在温带荒漠区,深根系植物能利用更多资源,减弱盐害作用,更易保持叶片功能来适应盐、旱胁迫。(2)生长型水平上,沿着土壤水盐梯度(Ⅰ高水高盐-Ⅱ中水中盐-Ⅲ低水低盐),草本和乔木植物的叶片厚度均呈逐渐升高趋势,叶绿素、叶片面积和比叶面积都呈逐渐下降的趋势;灌木叶片厚度呈倒"V"型变化,叶绿素、叶片面积和比叶面积呈"V"型变化。乔木和草本权衡叶片厚度与面积之间碳投资的功能,以及灌木的丛生特性体现了温带荒漠区不同生长型植物适应不同胁迫环境的生长策略。(3)群落水平上,叶片功能性状在Ⅱ梯度下与I梯度或Ⅲ梯度之间呈显著差异;并且土壤盐分含量和土壤水分含量的解释量均较大,其中土壤盐分含量的解释量最大,为13.7%,土壤水盐比值的解释量最小,为2.4%。说明不同水盐梯度下,群落植物叶片性状梯度性的功能调节保持着资源优化配置,侧面反映出水盐异质性分布在一定程度上决定了温带荒漠区植物群落构建。
        The relationship between plant leaf function traits and environmental factors has been attracted much attention in recent years. This paper took the desert forest as the research object, which locates on the north shore of Aqikesu in the Ebinur Basin of Xinjiang, China. We layout 5 belts, with a area of 30 m×3 000 m for each belt, and systematically measured 4 leaf traits along the environmental gradients of soil moisture and salinity, in which the soil moisture gradient was(4.20%±0.57%),(9.69%±1.95%),(17.59%±0.83%) and the soil salinity gradient was(3.45±0.46),(4.72±0.74),(6.42±0.35) g·kg-1. Leaf traits included leaf area, specific leaf area, leaf thickness and chlorophyll content. We aimed to find the regulation mechanism of functional traits of plant leaves at the species, growth and community levels, respectively, and so as to make an explanation that whether there is a strategy response phenomenon. The results showed that:(1) On the level of species, only the chlorophyll content of Karelinia caspica and Apocynum venetum showed a linear relationship with soil salinity, the former showed a positive correlation(P<0.05), but the latter showed a negative correlation(P<0.01). There was no significant linear relationship between all plants leaf thickness and soil moisture and salinity(P>0.05). The leaf area of Apocynum venetum and Nitraria schoberi showed a significant negative correlation with soil moisture and the ratio of water to salt, respectively(P<0.05). There was a significant negative correlation between Tamarix ramosissima and soil salinity. There was significant positive correlation between specific leaf area of Phragmites australis, Nitraria schoberi, Haloxylon ammodendron and Populus euphratica and soil moisture and the ratio of water to salt(P<0.05). These phenomena indicated that deep root plants in temperate desert area could utilize more resources, weaken salt damage, and more easily maintain leaf function to adapt to salt and drought stress.(2) At the growth level, as the gradient of soil aridity and salinity ranged fromⅠhigh water-salt content,-Ⅱ moderate water-salt content, to Ⅲ low water-salt content, the leaf thickness of herbaceouses and trees increased leaf area and specific leaf area decreased, gradually. The leaf thickness of shrub showed an inverted "V" type, and chlorophyll content, leaf area and specific leaf area showed a "V" type change from high(Ⅰ) to middle(II) to low(Ⅲ) along the gradient with moisture and salinity. These phenomena indicated that trees and herbs weighed the function of carbon investment between leaf thickness and its area, and the cluster characteristics of shrubs reflected the growth strategies of different growing plants in temperate desert areas to adapt to different stress environments. And(3) on the level of community, there was a significant difference in leaf functional traits between Ⅱ gradient and I gradient or Ⅲ gradient. The amount of soil salinity and soil moisture content waslarger, and the explanatory volume of soil salinity was the largest, which accounted for 13.7%, and the ratio of soil water to salt was the least, which was 2.4%. The above results show that under different water and salt gradients, the functional adjustments of the gradients of plant leaf traits in the community keep a optimal allocation of resources, which reflect from the side that the distribution of effluent salinity determins the construction of plant communities in temperate desert areas to a certain extent.
引文
BAGOUSSE-PINGUET Y L,GROSS N,MAESTRE F T,et al.,2017.Testing the environmental filtering concept in global drylands[J].Journal of Ecology,105(4):1058-1069.
    BARNARD D M,MEINZER F C,LACHENBRUCH B,et al.,2011.Climate-related trends in sapwood biophysical properties in two conifers:Avoidance of hydraulic dysfunction through coordinated adjustments in xylem efficiency,safety and capacitance[J].Plant Cell and Environment,34(4):643-654.
    BLONDER B,KAPAS R E,DALTON R M,et al.,2018.Microenvironment and functional-trait context dependence predict alpine plant community dynamics[J].Journal of Ecology,106(4):1323-1337.
    CORNWELL W K,BHASKAR R,SACK L,et al.,2007.Adjustment of structure and function of hawaiian metrosideros polymorpha at high vs.Low precipitation[J].Functional Ecology,21(6):1063-1071.
    DíAZ S,KATTGE J,CORNELISSEN J H C,et al.,2016.The global spectrum of plant form and function[J].Nature,529(7585):167-171.
    FAJARDO A,SIEFERT A,2018.Intraspecific trait variation and the leaf economics spectrum across resource gradients and levels of organization[J].Ecology,99(5):1024-1030.
    GIBERT A,GRAY E F,WEATOBY M,et al.,2016.On the link between functional traits and growth rate:Meta-analysis shows effects change with plant size,as predicted[J].Journal of Ecology,104(5):1488-1503.
    KROBER W,HEKLAU H,BRULHEIDE H,2015.Leaf morphology of 40evergreen and deciduous broadleaved subtropical tree species and relationships to functional ecophysiological traits[J].Plant Biology,17(2):373-83.
    LEIGH A,SEVANTO S,BALL M C,et al.,2012.Do thick leaves avoid thermal damage in critically low wind speeds?[J].New Phytologist,194(2):477-487.
    MCCOY-SULENTIC M E,KOLB T E,MERRITT D M,et al.,2017.Variation in species-level plant functional traits over wetland indicator status categories[J].Ecology and Evolution,7(11):3732-3744.
    MCDOWELL N,POCKMAN W T,ALLEN C D,et al.,2008.Mechanisms of plant survival and mortality during drought:Why do some plants survive while others succumb to drought?[J].New Phytologist,178(4):719-739.
    MCLEAN E H,PROBER S M,STOCK W D,et al.,2014.Plasticity of functional traits varies clinally along a rainfall gradient in eucalyptus tricarpa[J].Plant Cell and Environment,37(6):1440-1451.
    NIINEMETSü,2001.Global-scale climatic controls of leaf dry mass per area,density,and thickness in trees and shrubs[J].Ecology,82(2):453-469.
    PETTER G,WANGER K,WANEK W,et al.,2016.Functional leaf traits of vascular epiphytes:Vertical trends within the forest,intra-and interspecific trait variability,and taxonomic signals[J].Functional Ecology,30(2):188-198.
    SANTIAGO L S,WRIGHT S J,2007.Leaf functional traits of tropical forest plants in relation to growth form[J].Functional Ecology,21(1):19-27.
    VALVERDEBARRANTES O J,FRECHET G T,ROUMET C,et al.,2017.A worldview of root traits:The influence of ancestry,growth form,climate and mycorrhizal association on the functional trait variation of fine-root tissues in seed plants[J].New Phytologist,215:1295-1297.
    WEIHER E,KEDDY P A,1998.Community assembly rules,morphological dispersion,and the coexistence of plant species[J].Oikos,81(2):309-322.
    WENG E,FARRIOR C E,DYBZINSKI R,et al.,2017.Predicting vegetation type through physiological and environmental interactions with leaf traits:Evergreen and deciduous forests in an earth system modeling framework[J].Global Chang Biology,23(6):2482-2498.
    WITKOWSKI E T F,LAMONT B B,1991.Leaf specific mass confounds leaf density and thickness[J].Oecologia,88(4):486-493.
    WRIGHT I J,REICH P B,WESTOBY M,et al.,2004.The worldwide leaf economics spectrum[J].Nature,428(6985):821-827.
    龚时慧,温仲明,施宇,2011.延河流域植物群落功能性状对环境梯度的响应[J].生态学报,31(20):6088-6097.
    龚雪伟,吕光辉,2017.艾比湖流域杜加依林荒漠植物群落多样性及优势种生态位[J].生物多样性,25(1):34-45.
    韩玲,赵成章,徐婷,等,2017.不同土壤水分条件下洪泛平原湿地芨芨草叶片厚度与叶脉性状的关系[J].植物生态学报,41(5):529-538.
    贾磊,安黎哲,2004.花花柴脱盐能力及脱盐结构研究[J].西北植物学报,24(3):510-515.
    刘贵峰,刘玉平,达福白乙拉,等,2017.大青沟自然保护区主要森林群落优势种的叶性状[J].生态学报,37(14):4646-4655.
    罗绪强,张桂玲,王世杰,等,2018.退化喀斯特森林群落常见植物叶片SPAD值变异特征[J].生态环境学报,27(4):595-600.
    刘晓娟,马克平,2015.植物功能性状研究进展[J].中国科学:生命科学,45(4):325-339.
    马辉英,杨晓东,吕光辉,等,2017.新疆艾比湖湿地自然保护区荒漠优势种体内的水分来源[J].生态学报,37(3):829-840.
    宁建凤,郑青松,杨少海,等,2010.高盐胁迫对罗布麻生长及离子平衡的影响[J].应用生态学报,21(2):325-330.
    王晶媛,张慧,虞木奎,等,2017.区域尺度上麻栎叶片性状对环境因子的响应规律[J].生态环境学报,26(5):754-762.
    武燕,尹建军,李善家,2017.黑河下游荒漠植物黑果枸杞叶片性状特征及其盐分响应[J].生态学杂志,36(5):1277-1284.
    徐澜,高志强,安伟,等,2016.冬麦春播条件下旗叶光合特性、叶绿素荧光参数变化及其与产量的关系[J].应用生态学报,27(1):133-142.
    尧婷婷,孟婷婷,倪健,等,2010.新疆准噶尔荒漠植物叶片功能性状的进化和环境驱动机制初探[J].生物多样性,18(2):188-197.
    张鹏骞,朱明淏,刘艳菊,等,2017.北京路边9种植物叶片表面微结构及其滞尘潜力研究[J].生态环境学报,26(12):2126-2133.
    赵生龙,曾凡江,张波,等,2016.盐分胁迫对骆驼刺幼苗叶片性状的影响[J].草业科学,33(9):1770-1778.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700