同步硝化反硝化耦合除磷工艺的快速启动及其运行特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Rapid Start-up of Simultaneous Nitrification and Denitrification Coupled Phosphorus Removal Process and Its Performing Characteristics
  • 作者:冷璐 ; 信欣 ; 鲁航 ; 唐雅男 ; 万利华 ; 郭俊元 ; 程庆锋
  • 英文作者:LENG Lu;XIN Xin;LU Hang;TANG Ya-nan;WAN Li-hua;GUO Jun-yuan;CHENG Qing-feng;College of Resources and Environment,Chengdu University of Information Technology;Air Environmental Modeling and Pollution Controlling Key Laboratory of Sichuan Higher Education Institutes,Chengdu University of Information Technology;
  • 关键词:好氧颗粒污泥 ; 同步硝化反硝化 ; 除磷 ; 低COD/N ; 溶解氧
  • 英文关键词:aerobic granular sludge;;simultaneous nitrification and denitrification(SND);;phosphorus removal;;low COD / N ratio;;dissolved oxygen
  • 中文刊名:HJKZ
  • 英文刊名:Environmental Science
  • 机构:成都信息工程大学资源环境学院;成都信息工程大学大气环境模拟与污染控制四川省高校重点实验室;
  • 出版日期:2015-10-27 11:21
  • 出版单位:环境科学
  • 年:2015
  • 期:v.36
  • 基金:四川省科技支撑计划项目(2013GZ0067);; 大气环境模拟与污染控制四川省高校重点实验室开放基金项目(KFKT2014003)
  • 语种:中文;
  • 页:HJKZ201511034
  • 页数:9
  • CN:11
  • ISSN:11-1895/X
  • 分类号:248-256
摘要
以低COD/N生活污水(C/N为3∶1~4∶1)为进水基质,在序批式活性污泥反应器(SBR)中接种好氧颗粒污泥(AGS),通过逐步降低溶解氧(DO)浓度的方式快速实现同步硝化反硝化耦合除磷.反应器运行20 d后(DO浓度为0.50~1.0mg·L-1),系统出现同步硝化反硝化耦合除磷的现象.在随后运行的40 d里,反应器对废水COD、NH+4-N、TN和TP的平均去除率分别为84.84%、93.51%、77.06%和85.69%;出水NO-3-N和NO-2-N平均浓度分别为4.01 mg·L-1和3.17 mg·L-1.反应器启动运行后期,污泥体积指数(SVI)为55.22 m L·g-1,沉降性能良好,颗粒结构较完整.不同氮源的周期曝气阶段结果表明,对TN的去除率为NH+4-N>NO-2-N>NO-3-N;对TP的去除率为NO-3-N>NO-2-N>NH+4-N,反应器主要以同步硝化反硝化脱氮和反硝化方式除磷.
        In this study,simultaneous nitrification and denitrification( SND) coupled Phosphorus removal process through gradually decreasing DO concentration was investigated by treating wastewater with a low COD / TN ratio( C / N = 3∶ 1-4∶ 1) in a sequencing batch reactor( SBR) inoculated with aerobic granular sludge( AGS). Successful SND coupled Phosphorus phenomenon occurred after 20 d at the DO concentration of 0. 50-1. 0 mg·L- 1. In the following 40 days,the average removal rates of COD,NH+4-N,TN and TP were84. 84%,93. 51%,77. 06% and 85. 69%,and the NO-3-N and NO-2-N average accumulations in the effluent were only 4. 01 mg·L- 1and 3. 17 mg·L- 1,respectively. The AGS had complete forms and good settling performances,and the sludge volume index( SVI)was about 55. 22 m L·g- 1at the end of starting-up stage. The results of different nitrogen sources showed that the removal rate of TN was in the order of NH+4-N > NO-2-N > NO-3-N,and the removal rate of TP was in the order of NO-3-N > NO-2-N > NH+4-N. The nitrogen and phosphorus removal of wastewater were mainly realized by simultaneous nitrification and denitrification and denitrifying phosphorus removal,respectively.
引文
[1]Zhang C Y,Wang L,Yan N,et al.Air-lift internal loop biofilm reactor for realized simultaneous nitrification and denitrification[J].Bioprocess and Biosystems Engineering,2013,36(5):597-602.
    [2]Baek S H,Kim H J.Mathematical model for simultaneous nitrification and denitrification(SND)in membrane bioreactor(MBR)under Low Dissolved Oxygen(DO)concentrations[J].Biotechnology and Bioprocess Engineering,2013,18(1):104-110.
    [3]邓时海,李德生,卢阳阳,等.集成模块系统同步硝化反硝化处理低碳氮比污水的试验[J].中国环境科学,2014,34(9):2259-2265.
    [4]Zeng W,Zhang Y,Li L,et al.Simultaneous nitritation and denitritation of domestic wastewater without addition of external carbon sources at limited aeration and normal temperatures[J].Desalination and Water Treatment,2010,21(13):210-219.
    [5]高大文,彭永臻,王淑莹.交替好氧/缺氧短程硝化反硝化生物脱氮Ⅰ.方法实现与控制[J].环境科学学报,2004,24(5):761-768.
    [6]梁小玲,李平,吴锦华,等.短程同步硝化反硝化过程的脱氮与N2O释放特性[J].环境科学,2013,34(5):1845-1850.
    [7]Villaverde S,Fdz-Polanco F,Garcia P A.Nitrifying biofilm acclimation to free ammonia in submerged biofilters.Start-up influence[J].Water Research,2000,34(2):602-610.
    [8]赵志瑞,马斌,张树军,等.高氨氮废水与城市生活污水短程硝化系统菌群比较[J].环境科学,2013,34(4):1448-1456.
    [9]Bai Y H,Sun Q H,Sun R H,et al.Bioaugmentation and adsorption treatment of coking wastewater containing pyridine and quinoline using zeolite-biological aerated filters[J].Environmental Science&Technology,2011,45(5):1940-1948.
    [10]张可方,方茜,曹勇锋.温度和溶解氧对短程同步硝化反硝化脱氮效果的影响[J].广州大学学报(自然科学版),2011,10(1):81-84.
    [11]马娟,彭永臻,王丽,等.温度对反硝化过程的影响以及p H值变化规律[J].中国环境科学,2008,28(11):1004-1008.
    [12]尚会来,彭永臻,张精蓉,等.温度对短程硝化反硝化的影响[J].环境科学学报,2009,29(3):516-520.
    [13]吴迪,李冬,刘丽倩,等.SBR亚硝化处理城市生活污水二级出水及其稳定性[J].中国给水排水,2013,29(11):6-10.
    [14]赵卫兵,陈天虎,张强,等.溶解氧对Biolak型A2O工艺脱氮除磷性能的影响[J].环境科学学报,2014,34(11):2754-2758.
    [15]李泽兵,李军,李妍,等.短程硝化反硝化技术研究进展[J].给水排水,2011,37(9):163-168.
    [16]Mohammed R N,Abu-Alhail S,Wu L X.Intercross real-time control strategy in a novel phased isolation tank step feed process for treating low C/N real wastewater under ambient temperature[J].Korean Journal of Chemical Engineering,2014,31(10):1798-1809.
    [17]谭冲,刘颖杰,王薇,等.碳氮比对聚氨酯生物膜反应器短程硝化反硝化的影响[J].环境科学,2014,35(10):3807-3813.
    [18]刘文如,丁玲玲,王建芳,等.低C/N比条件下亚硝化颗粒污泥的培养及成因分析[J].环境科学学报,2013,33(8):2226-2233.
    [19]罗思音.DO对短程同步硝化反硝化除磷工艺的影响[J].水科学与工程技术,2011,(5):18-20.
    [20]张立秋,韦朝海,张方可,等.常温下SBBR反应器中短程同步硝化反硝化的实现[J].工业用水与废水,2008,39(4):1-5.
    [21]Wei D W,Du B,Xue X D,et al.Analysis of factors affecting the performance of partial nitrification in a sequencing batch reactor[J].Applied Microbiology and Biotechnology,2014,98(4):1863-1870.
    [22]汪传新,龚灵潇,彭永臻.低温下MBBR处理低碳氮质量比生活污水的同步硝化反硝化特性[J].中南大学学报(自然科学版),2014,45(8):2920-2927.
    [23]张肖静,李冬,梁瑜海,等.MBR-CANON工艺处理生活污水的快速启动及群落变化[J].哈尔滨工业大学学报,2014,46(4):25-30.
    [24]赵庆良,李江雯,魏亮亮,等.混凝滤布过滤-缺氧滤池/生物滴滤工艺处理生活污水[J].哈尔滨工业大学学报,2014,46(8):21-26.
    [25]Yan L L,Liu Y,Ren Y,et al.Analysis of the characteristics of short-cut nitrifying granular sludge and pollutant removal processes in a sequencing batch reactor[J].Bioprocess and Biosystems Engineering,2014,37(2):125-132.
    [26]姚力,信欣,周迎芹,等.好氧反硝化菌强化序批式活性污泥反应器处理生活污水[J].环境污染与防治,2014,36(3):73-77,81.
    [27]国家环境保护总局.水和废水监测分析方法[M].(第四版).北京:中国环境科学出版社,2002.258-280.
    [28]陈益明.SBR反应器实现半亚硝化的启动策略[J].厦门大学学报(自然科学版),2013,52(2):232-236.
    [29]张小玲,王志盈.低溶解氧下SBR内短程硝化影响因素试验研究[J].环境科学与技术,2011,34(1):163-166.
    [30]Park H D,Noguera D R.Evaluating the effect of dissolved oxygen on ammonia-oxidizing bacterial communities in activated sludge[J].Water Research,2004,38(14-15):3275-3286.
    [31]高景峰,周建强,彭永臻.处理实际生活污水短程硝化好氧颗粒污泥的快速培养[J].环境科学学报,2007,27(10):1604-1611.
    [32]Guo X,Kim J H,Behera S K,et al.Influence of dissolved oxygen concentration and aeration time on nitrite accumulation in partial nitrification process[J].International Journal of Environmental Science&Technology,2008,5(4):527-534.
    [33]方茜,张朝升,张立秋,等.曝气量对同时硝化/反硝化除磷工艺效能的影响[J].中国给水排水,2014,30(21):14-18.
    [34]张方可,张朝升,罗思音,等.SBR短程同步硝化反硝化耦合除磷的研究[J].中国给水排水,2010,26(7):65-70.
    [35]余鸿婷,李敏.反硝化聚磷菌的脱氮除磷机制及其在废水处理中的应用[J].微生物学报,2015,55(3):264-272.
    [36]Adav S S,Lee D J,Lai J Y.Potential cause of aerobic granular sludge breakdown at high organic loading rates[J].Applied Microbiology and Biotechnology,2010,85(5):1601-1610.
    [37]李志华,吴军,贺春博,等.水力旋流条件对好氧颗粒污泥稳定性影响[J].环境科学学报,2013,33(3):671-675.
    [38]牛姝,段百川,张祚黧,等.连续流态下以城市污水培养好氧颗粒污泥及颗粒特性研究[J].环境科学,2013,34(3):988-992.
    [39]彭永臻,吴蕾,马勇,等.好氧颗粒污泥的形成机制、特性及应用研究进展[J].环境科学,2010,31(2):273-281.
    [40]王建龙,张子健,吴伟伟.好氧颗粒污泥的研究进展[J].环境科学学报,2009,29(3):449-473.
    [41]张倩,王弘宇,桑稳姣,等.1株反硝化除磷菌的鉴定及其反硝化功能基因研究[J].环境科学,2013,34(7):2876-2881.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700