高压脉冲电场对酿酒酵母发酵能力的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of Pulsed Electric Field on Fermentation Capacity of Saccharomyces cerevisiae
  • 作者:范成凯 ; 应南娇 ; 樊凯 ; 徐莹 ; 杨勇
  • 英文作者:FAN Chengkai;YING Nanjiao;FAN Kai;XU Ying;YANG Yong;College of Life Information Science and Instrument Engineering, Hangzhou Dianzi University;
  • 关键词:高压脉冲电场 ; 酿酒酵母 ; 活性 ; 发酵
  • 英文关键词:pulsed electric field;;S.Cerevisiae;;activation;;fermentation
  • 中文刊名:HNXB
  • 英文刊名:Journal of Nuclear Agricultural Sciences
  • 机构:杭州电子科技大学生命信息与仪器工程学院;
  • 出版日期:2018-11-19 13:07
  • 出版单位:核农学报
  • 年:2019
  • 期:v.33
  • 基金:国家自然科学基金(31401667);; 浙江省重大科技专项(2014C03017)
  • 语种:中文;
  • 页:HNXB201901012
  • 页数:5
  • CN:01
  • ISSN:11-2265/S
  • 分类号:82-86
摘要
为探究高压脉冲电场(PEF)在酒精发酵工业上的实际应用,本研究以酿酒酵母为试验材料,在设定脉宽、频率、作用时间等参数不变的条件下,以电场强度为唯一变量,分别采用电场强度为1、6 kV·cm~(-1)的PEF对酵母进行预处理。通过检测发酵底液中酵母生长量、葡萄糖消耗量和乙醇产出量的变化,探究PEF对酿酒酵母发酵能力的影响。结果表明,经12 h发酵后,在电场强度为1 kV·cm~(-1)的PEF刺激作用下,酿酒酵母葡萄糖消耗量提高了10.18%,乙醇产出量提高了11.05%;当电场强度为6 kV·cm~(-1)时,葡萄糖消耗量和乙醇产出量均降低。本研究结果为提高酿酒酵母的发酵能力提供了一种新方法。
        To explore the practical application of pulse electric field in ethanol fermentation industry, S. cerevisiae was used as experimental material in this study. Electric field intensity was the only variable and other parameters such as pulse width, frequency, and action time were kept constant. PEF treatments were applied to the yeast cells at the electric field intensity of 1 kV·cm~(-1)and 6 kV·cm~(-1). The fermentation capacity of S. cerevisiae was analyzed by measuring the yeast biomass, consumption of glucose and yield of ethanol in fermentation substrate. The results showed that at the end of fermentation(12 h), glucose consumption and ethanol yield in sample with PEF treatment at electric field intensity of 1 kV·cm~(-1) exceeded control sample by 10.18% and 11.05%, respectively. The glucose consumption and ethanol yield were both reduced at electric field strength of 6 kV·cm~(-1). The results of this study provide a new method to enhance fermentation capacity of S. cerevisiae.
引文
[1] Zhang K, Di Y N, Qi L, Sui Y, Wang T Y, Fan L, Lv Z M, Wu X C, Wang P M, Zheng D Q. Genetic characterization and modification of a bioethanol-producing yeast strain[J]. Applied Microbiology & Biotechnology, 2018, 102(5): 2213-2223
    [2] Seong Y J, Park H, Yang J, Kim S J, Choi W, Kim K H, Park Y C. Expression of a mutated SPT15 gene in Saccharomyces cerevisiae enhances both cell growth and ethanol production in microaerobic batch, fed-batch, and simultaneous saccharification and fermentations[J]. Applied Microbiology & Biotechnology, 2017, 101(9): 3567-3575
    [3] Santos L O D, Gonzales T A, úbeda B T, Alegre R M. Glutathione production using magnetic fields generated by magnets[J]. Brazilian Archives of Biology & Technology, 2012, 55(6): 921-926
    [4] Berlot M, Rehar T, Fefer D, Berovic M. The influence of treatment of Saccharomyces cerevisiae inoculum with a magnetic field on subsequent grape must fermentation[J]. Chemical & Biochemical Engineering Quarterly, 2013, 27(4): 423-429
    [5] 罗华. 超声波对葡萄酒微生物活性影响及部分相关基因表达水平研究[D]. 杨凌:西北农林科技大学, 2013
    [6] Dai C, Feng X, He R, Zhang W, Ma H. Effects of low-intensity ultrasound on the growth, cell membrane permeability and ethanol tolerance of Saccharomyces cerevisiae[J]. Ultrasonics Sonochemistry, 2017, 36: 191-197
    [7] Puértolas E, Luengo E, álvarez Ⅰ, Raso J. Improving mass transfer to soften tissues by pulsed electric fields: fundamentals and applications[J]. Annual Review of Food Science and Technology, 2012, 3(3): 263-282
    [8] Yang N, Huang K, Lyu C, Wang J. Pulsed electric field technology in the manufacturing processes of wine, beer, and rice wine: a review[J]. Food Control, 2016, 61: 28-38
    [9] 应南娇, 付荣, 杨勇, 章娟. 高压脉冲电场对大肠杆菌噬菌体灭活效果初探[J]. 核农学报, 2014, 28(8): 1440-1445
    [10] Saw N M M T, Riedel H, Cai Z, Kütük O, Smetanska Ⅰ. Stimulation of anthocyanin synthesis in grape (Vitis vinifera) cell cultures by pulsed electric fields and ethephon[J]. Plant Cell Tissue & Organ Culture, 2012, 108(1): 47-54
    [11] Ye H, Huang L L, Chen S D, Zhong J J. Pulsed electric field stimulates plant secondary metabolism in suspension cultures of Taxus chinensis[J]. Biotechnology & Bioengineering, 2004, 88(6): 788-795
    [12] Ohshima T, Tamura T, Sato M. Influence of pulsed electric field on various enzyme activities[J]. Journal of Electrostatics, 2007, 65(3): 156-161
    [13] Yin X, Qiao S, Zhou J. Using electric field to enhance the activity of anammox bacteria[J]. Applied Microbiology & Biotechnology, 2015, 99(16): 1-10
    [14] 刘珂舟, 袁夏冰, 刘露, 杨勇, 韩其国, 应南娇.高压脉冲电场对大肠杆菌灭菌条件的优化[J]. 核农学报, 2015, 29(8): 1566-1571
    [15] Guzzon R, Larcher R. The application of flow cytometry in microbiological monitoring during winemaking: two case studies[J]. Annals of Microbiology, 2015, 65(4): 1865-1878
    [16] 张树明, 杨阳, 梁学军, 李景明, 倪元颖. 葡萄酒发酵过程主要参数近红外光谱分析[J]. 农业机械学报, 2013, 44(1): 152-156
    [17] Corovic S, Lackovic Ⅰ, Sustaric P, Sustar T, Rodic T, Miklavcic D. Modeling of electric field distribution in tissues during electroporation[J]. BioMedical Engineering OnLine, 2013, 12(1): 16
    [18] Sack M, Mueller G. Scaled design of PEF treatment reactors for electroporation-assisted extraction processes[J]. Innovative Food Science & Emerging Technologies, 2016, 37(2): 400-406
    [19] Liu Z W, Zeng X A, Sun D W, Han S. Effects of pulsed electric fields on the permeabilization of calcein-filled soybean lecithin vesicles[J]. Journal of Food Engineering, 2014, 131(2): 26-32
    [20] Rego D, Costa L, Pereira M T, Redondo L M. Cell membrane permeabilization studies of Chlorella sp. by pulsed electric fields[J]. IEEE Transactions on Plasma Science, 2015, 43(10): 3483-3488
    [21] Casciola M, Tarek M. A molecular insight into the electro-transfer of small molecules through electropores driven by electric fields[J]. Biochim Biophys Acta, 2016, 1858(10): 2278-2289
    [22] Henshaw J W, Zaharoff D A, Mossop B J, Yuan F. Electric field-mediated transport of plasmid DNA in tumor interstitium in vivo[J]. Bioelectrochemistry, 2007, 71(2): 233-242
    [23] Pankiewicz U, Jamroz J. Accumulation of selenium and catalase activity changes in the cells of Saccharomyces cerevisiae on pulsed electric field (PEF) treatment[J]. Annals of Microbiology, 2008, 58(2): 239-243
    [24] Tanino T, Sato S, Oshige M, Ohshima T. Analysis of the stress response of yeast Saccharomyces cerevisiae toward pulsed electric field[J]. Journal of Electrostatics, 2012, 70(2): 212-216
    [25] 陈晨, 赵伟, 杨瑞金,顾艳洁. PEF作用下亚致死损伤酿酒酵母修复条件的初步研究[J]. 食品工业科技, 2014, 35(21): 49-53
    [26] Wang M S, Wang L H, Bekhit E D A, Yang J, Hou Z P, Wang Y Z, Dai Q Z, Zeng X A. A review of sublethal effects of pulsed electric field on cells in food processing[J]. Journal of Food Engineering, 2018, 223: 32-41
    [27] Tanino T, Yoshida T, Sakai K, Sun B, Ohshima T. Inactivation of Escherichia coli, phages by PEF treatment and analysis of inactivation mechanism[J]. Journal of Electrostatics, 2015, 73: 151-155
    [28] 孙静, 孔繁东, 祖国仁, 但果, 周积岩. 高压脉冲电场对酵母菌和大肠杆菌存活率的影响[J]. 食品科学, 2004, 25(2): 87-90
    [29] Kang H, Tian H, Ling G, Wang J. A review of kinetic models for inactivating microorganisms and enzymes by pulse electric field processing[J]. Journal of Food Engineering, 2012, 111(2): 191-207
    [30] Mattar J R, Turk M F, Nonus M, Lebovka N I, Zakhem H E, Vorobiev E. Stimulation of Saccharomyces cerevisiae cultures by pulsed electric fields[J]. Food & Bioprocess Technology, 2014, 7(11): 3328-3335
    [31] Najim N, Aryana K J. A mild pulsed electric field condition that improves acid tolerance, growth, and protease activity of Lactobacillus acidophilus LA-K and Lactobacillus delbrueckii subspecies bulgaricus LB-12[J]. Journal of Dairy Science, 2013, 96(6): 3424-3434

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700