纺丝液配备方法对PS/PVP纳米纤维膜性能的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of preparation method of spinning solution on properties of PS/PVP nanofiber membranes
  • 作者:赵磊 ; 何吉欢 ; 刘鹏
  • 英文作者:Zhao Lei;He Jihuan;Liu Peng;Yancheng Institute of Industry Technology;National Engineering Laboratory for Modern Silk, Soochow University;College of Textile and Clothing Engineering, Soochow University;
  • 关键词:纺丝液 ; 配备方法 ; 纳米纤维膜 ; 微观形态 ; 亲水性能 ; 强伸性能 ; 平均孔径 ; 空气流速
  • 英文关键词:spinning solution;;preparation method;;nanofiber membrane;;microstructure;;hydrophilicity;;strength and elongation;;average pore diameter;;air velocity
  • 中文刊名:CYYF
  • 英文刊名:Technical Textiles
  • 机构:盐城工业职业技术学院;苏州大学现代丝绸国家工程实验室;苏州大学纺织与服装工程学院;
  • 出版日期:2019-01-25
  • 出版单位:产业用纺织品
  • 年:2019
  • 期:v.37;No.364
  • 基金:2017年江苏高校“青蓝工程”资助项目(苏教师[2017]15号);; 2017年江苏省高校优秀中青年教师和校长境外研修项目(序号314);; 2015年江苏省高校品牌专业建设工程资助项目(PPZY2015C254);; 2016年盐城工业职业技术学院重点课题(ygy1602);; 2015年江苏高校优秀科技创新团队计划资助项目(苏教科[2015]4号)
  • 语种:中文;
  • 页:CYYF201901005
  • 页数:6
  • CN:01
  • ISSN:31-1595/TS
  • 分类号:28-33
摘要
采用特殊的纺丝液配备方法,依靠新型的气泡静电纺丝技术,成功纺制出PS/PVP纳米纤维膜,并对纳米纤维膜的微观形态、亲水性能、强伸性能、平均孔径及空气流速进行测试与分析。结果表明:不同配备方法的纺丝液获得的纳米纤维膜的微观形态、亲水性能、强伸性能、平均孔径及空气流速不同。表面粗糙程度高、孔洞多、有凹槽的纳米纤维,其形成的纳米纤维膜的亲水性能优,断裂强度高,断裂伸长率低,平均孔径和空气流速增加。
        With special preparation method of spinning solution, the PS/PVP nanofiber membranes were successfully obtained by the new bubble electrospinning technology. The microstructure, hydrophilicity, strength and elongation, average pore diameter and air velocity of the nanofiber membranes were tested and analyzed. The results showed that, the microstructure, hydrophilicity, strength and elongation, average pore diameter and air velocity of the nanofiber membranes obtained by spinning solutions with different preparing methods were different. The nanofiber membrane had good hydrophilic properties, high strength and low elongation at break, which made of nanofibers with higher surface roughness, more holes and grooves, and its average pore diameter and air velocity increased.
引文
[1] 丁彬,俞建勇. 静电纺丝与纳米纤维[M].北京:中国纺织出版社,2011:45-67.
    [2] 王策,卢晓峰,黄小军,等. 有机纳米功能材料——高压静电纺丝技术与纳米纤维[M].北京:科学出版社,2011:123-145.
    [3] 柯鹏,焦晓宁.气泡静电纺制备高聚物纳米纤维的原理及研究进展[J].纺织学报,2014,35(3):151-157.
    [4] JIANG P, LIU H F, WANG C H, et al. Tensile behavior and morphology of differently degummed silkworm (bombyx mori) cocoon silk fibres[J]. Materials Letters, 2006,60(7):919-925.
    [5] 李群华,丁盛. 相变纳米纤维/织物复合材料制备与保温性分析[J].上海纺织科技,2015, 43(4):21-23.
    [6] HE J H, KONG H Y, YANG R R, et al. Review on fiber morphology obtained by bubble electrospinning and blown bubble spinning[J]. Thermal Science, 2012, 16 (5):1263-1279.
    [7] HE J H, LIU Y. Control of bubble size and bubble number in bubble electrospinning[J]. Computers and Mathematics with Applications, 2012, 64(5):1033-1035.
    [8] 孔海燕,何吉欢.气泡静电纺丝工艺与装置研究进展[J].纺织学报, 2014,35(10):156-162.
    [9] ZHAO L, HE Y F, WANG Q W, et al. Microstructure and property of regenepercentaged silk fibron/chitosan nanofibers[J]. Thermal Science, 2016, 20(3): 979-983.
    [10] BONNIE B M, WARREN W B. The silk cocoon of the silkworm, bombyx mori: Macro structure and its influence on transmural diffusion of oxygen and water vapor[J]. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2010, 155(2):259-263.
    [11] CHEN F J, PORTER D, VOLLRATH F. Silk cocoon (bombyx mori): Multi-layer structure and mechanical properties[J]. Acta Biomaterialia, 2012, 8(7):620-627.
    [12] 刘雍.气泡静电纺丝技术及其机理研究[D].上海:东华大学,2008.
    [13] 杨柳青,汤玉斐,张恒,等. 静电纺丝法制备聚苯乙烯微纳米纤维膜及其过滤性能[J].化工新型材料, 2014,42(6):55-58.
    [14] 周贝贝,徐文正,凤权,等.静电纺丝制备PTFE/PVP复合纤维及性能研究[J].安徽工程大学学报,2016,31(5):6-9.
    [15] 张振,钱永芳,郑来久,等.静电纺丝法制备PVP/芦丁抗紫外纳米纤维膜[J].上海纺织科技, 2016, 44(4):31-32.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700