氧化海藻酸钠预处理提高树脂牙本质粘接的耐久性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preliminary study on resin-dentin bond durability by alginate dialdehyde preconditioning
  • 作者:谢丹丹 ; 麦穗 ; 吴倩 ; 赵曼多 ; 谭易 ; 古丽莎
  • 英文作者:Xie Dandan;Mai Sui;Wu Qian;Zhao Manduo;Tan Yi;Gu Lisha;Guanghua School of Stomatology,Hospital of Stomatology,Sun Yat-sen University,Guangdong Provincial Key Laboratory of Stomatology;
  • 关键词:藻酸盐 ; 交联试剂 ; 天然 ; 树脂粘固 ; 牙本质 ; 氧化海藻酸钠
  • 英文关键词:Alginates;;Cross-linking reagents,natural;;Resin-bonded,dentin;;Alginate dialdehyde
  • 中文刊名:ZKQD
  • 英文刊名:Chinese Journal of Stomatological Research(Electronic Edition)
  • 机构:中山大学光华口腔医学院·附属口腔医院,广东省口腔医学重点实验室;
  • 出版日期:2018-12-01
  • 出版单位:中华口腔医学研究杂志(电子版)
  • 年:2018
  • 期:v.12
  • 基金:国家自然科学基金(81873712);; 广东省自然科学基金(2018A030313409);; 广州市科技计划(2014J2200099)
  • 语种:中文;
  • 页:ZKQD201806001
  • 页数:6
  • CN:06
  • ISSN:11-9285/R
  • 分类号:6-11
摘要
目的研究氧化海藻酸钠(ADA)改性脱矿牙本质胶原的交联度和显微形貌,及其对牙本质基质金属蛋白酶(MMP)的抑制作用和树脂牙本质粘接强度的影响。方法制备ADA,进行傅里叶红外线光谱分析(FTIR)。采用0.5%、1%、2%、3%和4%的ADA处理脱矿牙本质粉末(DDP)1、2、30 min,5%戊二醛溶液作为阳性对照,茚三酮比色法检测胶原交联度。制备(1.0±0.1)mm厚牙本质片,35%磷酸溶液酸蚀后ADA处理1 min,保持表面干燥或湿润,场发射扫描电镜(FESEM)观察其显微形貌。Sensolyte Generic MMP assay kit试剂盒检测不同浓度ADA对MMP-9的抑制作用。制备树脂牙本质粘接样本,检测ADA预处理试件冷热循环前后的微拉伸强度。使用SPSS 22.0对交联度实验进行多因素方差分析和Tukey检验,MMP-9抑制实验进行秩和检验和Bonferroni检验,微拉伸实验进行单因素方差分析和LSD检验。结果 FTIR显示海藻酸钠氧化后生成醛基形成ADA。DDP经ADA处理后,胶原交联度随处理浓度及处理时间呈依赖性增加,不同浓度组间(F=1329.423,P<0.001)及不同时间组间(F=1142.93,P<0.001)差异均有统计学意义。35%磷酸溶液脱矿牙本质表面经处理后,除阴性对照和0.5%ADA干燥处理组胶原纤维塌陷外,其余组均保持蓬松状态。0.5%~4%ADA对MMP-9的抑制程度为93.5%~100%,不同浓度组间差异有统计学意义(F=13.786,P<0.001)。ADA预处理后,2%ADA组粘接样本冷热循环前后的粘接强度最高,分别为(28.2±4.2)、(18.3±3.7)MPa,差异有统计学意义(F_前=5.544,P_前<0.001;F_后=5.181,P_后<0.001)MPa。结论 2%ADA处理脱矿牙本质可提高Ⅰ型胶原纤维的交联度,使胶原纤维网保持蓬松状态,同时能抑制MMP-9活性,提高树脂牙本质粘接即刻及老化后的微拉伸强度,有利于改善树脂牙本质的粘接耐久性。
        Objective To investigate the effect of alginate dialdehyde(ADA)on demineralized dentin substrate,in its cross-linking degree,micromorphology,inhibition ability and resin-dentin bonding strength. Methods ADA was prepared,and analyzed by Fourier Transform infrared spectroscopy(FTIR).Demineralized dentin powder were treated by 0.5%,1%,2%,3%,4% ADA for 1,2,30 min,respectively,and examined by Nihydri colorimetry for the cross-linking degrees,5% Glutaraldehyde was used as positive control(1.0 ± 0.1)mm dentin discs were etched,rinsed and pretreated with ADA successively,and kept dry or moist for field emission scanning electron microscope(FESEM). The inhibition of ADA on MMP-9 was analyzed by Sensolyte Generic MMP assay kit. Resin-dentin bonding specimens were prepared for micro-tensile bond strength evaluation(MTBS),before and after thermolcycling. Data were analyzed by Multi-way ANOVA,Kruskal-Wallis test or One-way ANOVA bySPSS 22.0 software package. Results FTIR analysis confirmed the characteristic peak of aldehyde groupin ADA. The cross-linking degree of ADA-treated DDP was exhibited concentration-and time-dependentand from which significant differences were found among different ADA concentration(F = 1329.423,P<0.001)and different time(F = 1142.93,P<0.001). The FESEM result confirmed that the demineralizeddentin collagen was in a homogenous and regular arrangement after ADA or GD treatment,except 0.5%ADA dry group. Over 93.5% of the MMP-9 was inhibited by 0.5% ~ 4% ADA(F = 13.786,P<0.001). The2% ADA group exhibited highest MTBS before[(28.2 ± 4.2)MPa](F=5.544,P<0.001)and after[(18.3 ±3.7)MPa](F = 5.181,P<0.001)thermolcycling. Conclusions 2% ADA could increase cross-linkingdegree of demineralized dentin substrate,keep collagen fiber from collapse,and inhibit the activity ofMMP-9,thus increase the durability of the dentin adhensive.
引文
[1]Sano H,Shono T,Takatsu T,et al.Microporous dentin zone beneath resin-impregnated layer[J].Oper Dent,1994,19(2):59-64.
    [2]Ritter AV,Bertoli C,Swift EJ Jr.Dentin bond strengths as a function of solvent and glutaraldehyde content[J].Am J Dent,2001,14(4):221-226.
    [3]Bouhadir KH,Lee KY,Alsberg E,et al.Degradation of partially oxidized alginate and its potential application for tissue engineering[J].Biotechnol Prog,2001,17(5):945-950.
    [4]Xu Y,Huang C,Li L,et al.In vitro enzymatic degradation of a biological tissue fixed by alginate dialdehyde[J].Carbohydr Polym,2013,95(1):148-154.
    [5]Xu Y,Li L,Yu X,et al.Feasibility study of a novel crosslinking reagent(alginate dialdehyde)for biological tissue fixation[J].Carbohydr Polym,2012,87(2):1589-1595.
    [6]Hu Y,Liu L,Gu Z,et al.Modification of collagen with a natural derived cross-linker,alginate dialdehyde[J].Carbohydr Polym,2014(102):324-332.
    [7]Mazzoni A,Mannell F,Tay FR,et al.Zymographic Analysis and Characterization of MMP-2 and-9 forms in human sound dentin[J].J Dent Res,2007,86(5):436-440.
    [8]Ito S,Hashimoto M,Wadgonkar B,et al.Effects of resin hydrophilicity on water sorption and changes in modulus of elasticity[J].Biomaterials,2005,26(33):6449-6459.
    [9]Sadek FT,Pashley DH,Nishitani Y,et al.Application of hydrophobic resin adhesives to acid-etched dentin with an alternative wet bonding technique[J].J Biomed Mater Res A,2008,84(1):19-29.
    [10]Kim YK,Gu LS,Bryan TE,et al.Mineralisation of reconstituted collagen using polyvinylphosphonic acid/polyacrylic acid templating matrix protein analogues in the presence of calcium,phosphate and hydroxyl ions[J].Biomaterials,2010,31(25):6618-6627.
    [11]Mai S,Kim YK,Kin J,et al.In vitro remineralization of severely compromised bonded dentin[J].J Dent Res,2010,89(4):405-410.
    [12]Gendron R,Grenier D,Sorsa T,et al.Inhibition of the activities of matrix metalloproteinases 2,8,and 9 by chlorhexidine[J].Clin Diagn Lab Immunol,1999,6(3):437-439.
    [13]Scaffa PM,Vidal CM,Barros N,et al.Chlorhexidine Inhibits the Activity of Dental Cysteine Cathepsins[J].J Dent Res,2012,91(4):420-425.
    [14]Blackburn RS,Harvey A,Kettle LL,et al.Sorption of chlorhexidine on cellulose:mechanism of binding and molecular recognition[J].J Phys Chem B,2007,111(30):8775-8784.
    [15]Castellan CS,Pereira PN,Grande RH,et al.Mechanical characterization of proanthocyanidin-dentin matrix interaction[J].Dent Mater,2010,26(10):968-973.
    [16]Deng M,Dong X,Zhou X,et al.Characterization of dentin matrix biomodified by Galla chinensis extract[J].J Endod,2013,39(4):542-547.
    [17]Kim GE,Leme-Kraus AA,Phansalkar R,et al.Effect of bioactive primers on bacterial-induced secondary caries at the tooth-resin[J].Oper Dent,2017,42(2):196-202.
    [18]Silva AP,Gon?alves RS,Borges AF,et al.Effectiveness of plantderived proanthocyanidins on demineralization on enamel and dentin under artificial cariogenic challenge[J].J Appl Oral Sci,2015,23(3):302-309.
    [19]Epasinghe DJ,Yiu CKY,Burrow MF,et al.Effect of proanthocyanidin incorporation into dental adhesive on durability of resin-dentin bond[J].Int J Adhes Adhes,2015(63):145-151.
    [20]Le-Tien C,Millette M,Lacroix M,et al.Modified alginate matrices for the immobilization of bioactive agents[J].Biotechnol Appl Biochem,2004,39(Pt 2):189-198.
    [21]Mazzoni A,Pashley DH,Nishitani Y,et al.Reactivation of inactivated endogenous proteolytic activities in phosphoric acidetched dentine by etch-and-rinse adhesives[J].Biomaterials,2006,27(25):4470-4476.
    [22]De Munck J,Mine A,Van den Steen PE,et al.Enzymatic degradation of adhesive-dentin interfaces produced by mild selfetch adhesives[J].Eur J Oral Sci,2010,118(5):494-501.
    [23]Liu Y,Tj?derhane L,Breschi L,et al.Limitations in bonding to dentin and experimental strategies to prevent bond degradation[J].J Dent Res,2011,90(8):953-968.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700