三江口东岩体岩石成因及产铀潜力分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on Petrogenesis and Uranium Mineralization Potential of Eastern Sanjiangkou Granitic Pluton
  • 作者:兰鸿锋 ; 凌洪飞 ; 陈卫锋 ; 刘建伟 ; 欧阳平宁
  • 英文作者:LAN Hongfeng;LING Hongfei;CHEN Weifeng;LIU Jianwei;OUYANG Pingning;Geologic Party No.294 Nuclear Industry of Fujian Province;State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University;Research Institute No.230,CNNC;
  • 关键词:三江口东岩体 ; 锆石U-Pb定年 ; S型花岗岩 ; 铀成矿潜力
  • 英文关键词:eastern Sanjiangkou granite;;Zircon U-Pb dating;;S-type granite;;uranium mineralization potential
  • 中文刊名:GXDX
  • 英文刊名:Geological Journal of China Universities
  • 机构:福建省核工业二九四大队;内生金属矿床成矿机制研究国家重点实验室南京大学地球科学与工程学院;核工业二三〇研究所;
  • 出版日期:2018-04-20
  • 出版单位:高校地质学报
  • 年:2018
  • 期:v.24;No.92
  • 基金:973课题(2012CB416703);; 中国核工业地质局高校铀矿地质科研项目资助
  • 语种:中文;
  • 页:GXDX201802003
  • 页数:13
  • CN:02
  • ISSN:32-1440/P
  • 分类号:28-40
摘要
诸广山南体是中国重要的铀资源基地之一,复式岩体内与铀矿床关系密切的花岗岩均为S型,I型花岗岩一般无铀成矿潜力。三江口岩体位于诸广山南体西部,与产有铀矿床的燕山期长江岩体相邻,岩性也与长江岩体相似。目前对三江口岩体研究程度相对薄弱,缺乏高精度年代学研究,岩石成因类型也未明确。文章对三江口岩体东部(简称三江口东岩体)进行U-Pb年代学和岩石地球化学研究,并与产铀的长江岩体进行对比。LA-ICP-MS锆石U-Pb年龄为161.9±2.1Ma,属于燕山早期花岗岩。岩体富SiO——2(73.5%~76.1%),贫FeOT(1.12%~3.25%)、MgO(0.07%~0.83%)、CaO(0.64%~1.27%),具高分异指数DI(86.4~93.6),A/CNK值为1.00~1.35,属过铝-强过铝质花岗岩;微量元素Ba、Sr、Nb、Eu、Ti亏损,Rb、Th、U富集,属于典型的低Ba、Sr花岗岩;稀土总量中等(∑REE=119×10~(-6)~268×10~(-6)),稀土配分模式为右倾的轻稀土富集型;(~(87)Sr/~(86)Sr)i值为0.70789~0.71488,εNd(t)值较低(-10.8~-9.6),两阶段Nd模式年龄为1.73~1.83Ga。三江口东岩体与长江岩体年龄相近,具有相似的岩石地球化学特征和同位素组成,均为S型花岗岩。结合两岩体形成年龄和区域构造背景,认为其形成与华南燕山早期陆内伸展作用有关,是由华南基底麻源群泥质岩、砂质岩部分熔融形成,在成岩过程中有少量幔源物质参与。通过与产铀的长江岩体对比研究认为,三江口东岩体具有较强的产铀潜力。
        The southern Zhuguangshan composite pluton(SZCP) is one of the important uranium resource bases of China. The S-typegranites in SZCP have a close relationship with uranium ore deposits, while the I-type granites in SZCP possess no uraniummetallogenic potential. The Sanjiangkou granitic pluton in the western part of SZCP has similar lithology to the adjacentYanshanian Changjiang granite which is a S-type granite and hosts uranium ore deposits. Till present, the Sanjiangkou granite hasrarely been studied, its precise chronology is lacked and its genetic type needs to be determined. In this paper, an integrated studyincluding geochronology, petrogeochemistry and Sr-Nd isotopic geochemistry of eastern Sanjiangkou granite and comparison withuranium-bearing Changjiang granite has been conducted. LA-ICP-MS zircon U-Pb dating for the eastern Sanjiangkou granite yields anage of 161.9±2.1Ma, suggesting its emplacement in the early Yanshanian period. Chemically, the granite has high SiO_2 contents(73.5%~76.1%) and low FeOT(1.12%~3.25%), MgO(0.07%~0.83%) and CaO(0.64%~1.27%) contents, thus is highly fractionated with highdifferentiation index(DI) values(86.4~93.6). A/CNK values of the granite vary from 1.00 to 1.35, indicating that it is a peraluminous tostrongly peraluminous granite. The granite is depleted in Ba, Sr, Nb, Eu and Ti, but enriched in Rb, Th and U, showing characteristicsof a typical low Ba and Sr granite. The rock samples display medium total REE contents(∑REE = 119 × 10~(-6)~268 × 10~(-6)), and their REEdistribution patterns are right-inclined. Isotopic geochemical analysis results reveal variable initial ~(87)Sr/~(86) Sr ratios(0.70789~0.71488),yet low and constant εNd(t) values(-10.8~-9.6) with two stage model ages of 1.73~1.83 Ga. The geochemical and geochronologicalcharacteristics of the eastern Sanjiangkou granite are similar to those of the Changjiang granite. Both of them are believed to be S-typegranitoids. Combining zircon U-Pb dating and regional tectonic setting, we suggest that the genesis of these granites were likely relatedto the crustal extension during the early Yanshanian in South China, and they were generated through partial melting of the MayuanGroup para-metamorphic rocks, with possibly minor involvement of mantle materials. Compared with the Changjiang granite, theeastern Sanjiangkou granite is believed to possess prosperous uranium mineralization potential.
引文
陈培荣.2004.华南东部中生代岩浆作用的动力学背景及其与铀成矿关系[J].铀矿地质,20(5):266-270.
    陈培荣,孔兴功,倪琦生,等.1999.赣南燕山早期双峰式火山岩的厘定和意义[J].地质论评,45(增刊):734-741.
    陈振宇,王登红.2014.锆石Th、U含量和Th/U比值对产铀、不产铀花岗岩体的判别意义[J].矿床地质,33(增刊):1159-1160.
    邓访陵.1987.诸广山花岗岩复式岩基南部的同位素地质年代学[J].地球化学,2:141-152.
    邓平,任纪舜,凌洪飞,等.2011.诸广山南体燕山期花岗岩的锆石SHRIMP U-Pb年龄及其构造意义[J].地质论评,56(6):881-882.
    邓平,任纪舜,凌洪飞,等.2012.诸广山南体印支期花岗岩的锆石SHRIMP U-Pb年龄及其构造意义[J].科学通报,57(14):1231-1241.
    范春方,陈培荣.2000.赣南陂头A型花岗岩的地质地球化学特征及其形成的构造环境[J].地球化学,29(4):358-366.
    冯明月,何德宝.2012.华南富铀花岗岩和产铀花岗岩特征[J].铀矿地质,28(4):199-207.
    高剑峰,陆建军,赖鸣远,等.2003.岩石样品中微量元素的高分辨率等离子质谱分析[J].南京大学学报(自然科学版),39(6):844-850.
    高山,骆庭川,张本仁,等.1999.中国东部地壳的结构和组成[J].中国科学(D辑),29(3):204-213.
    黄国龙,曹豪杰,凌洪飞,等.2012.粤北油洞岩体SHRIMP锆石U-Pb年龄、地球化学特征及其成因研究[J].地质学报,86(4):577-586.
    黄国龙,刘鑫扬,孙立强,等.2014.粤北长江岩体的锆石U-Pb定年、地球化学特征及其成因研究[J].地质学报,88(5):836-849.
    兰鸿锋,凌洪飞,孙立强,等.2016.诸广山南体桃金洞花岗岩成因和铀成矿潜力探讨[J].高校地质学报,22(1):012-029.
    李献华.1990.万洋山-诸广山花岗岩复式岩基的岩浆活动时代与地壳运动[J].中国科学(B辑),7:747-755.
    李献华,胡瑞忠.1997.粤北白垩纪基性岩脉的年代学和地球化学[J].地球化学,26(2):14-31.
    毛建仁,高桥浩,厉子龙,等.2009.中国东南部与日本中-新生代构造-岩浆作用对比研究[J].地质通报,28(7):32-44.
    毛建仁,厉子龙,叶海敏.2014.华南中生代构造-岩浆活动研究:现状与前景[J].中国科学地球科学(中文版),44(12):2593-2617.
    马铁球,邝军,柏道远,等.2006.南岭中段诸广山南体燕山早期花岗岩地球化学特征及其形成的构造环境分析[J].中国地质,33(1):119-131.
    马星华,陈斌,王志强,等.2014.南岭连阳复式岩体成因:锆石U-Pb年代学、地球化学和Nd-Hf同位素约束[J].地学前缘,21(6):264-279.
    全国同位素地质年龄数据汇编编篡小组.1983.全国同位素地质年龄数据汇编(第三集)[G].北京:地质出版社.
    全国同位素地质年龄数据汇编编篡小组.1986.全国同位素地质年龄数据汇编(第四集)[G].北京:地质出版社.
    濮巍,赵葵东,凌洪飞,等.2004.新一代高精度高灵敏度的表面热电离质谱仪(Triton Tl)的Nd同位素测定[J].地球学报,25(2):271-274.
    濮巍,高剑峰,赵葵东,等.2005.利用DCTA和HIBA快速有效分离Rb-Sr、Sm-Nd的方法[J].南京大学学报(自然科学版),41(4):445-450.
    舒良树,周新民.2002.中国东南部晚中生代构造作用[J].地质论评,48(3):249-260.
    孙涛,周新民,陈培荣,等.2003.南岭东段中生代强过铝花岗岩成因及其大地构造意义[J].中国科学(D辑),33(12):1209-1218.
    宋彪,张玉海,万渝生,等.2002.锆石SHRIMP样品靶制作、年龄测定及有关现象讨论[J].地质论评,48(1):26-30.
    田泽瑾.2014.诸广山产铀与不产铀花岗岩的年代学、地球化学及矿物学特征对比研究[D].北京:中国地质大学.
    吴元保,郑永飞.2004.锆石成因矿物学研究及其对U-Pb年龄解释的制约[J].科学通报,49(16):1589-1604.
    谢昕,徐夕生,蒋少涌,等.2005.中国东南部晚中生代大规模岩浆作用序幕:J2早期玄武岩[J].中国科学(D辑),35(7):587-605.
    张敏.2006.粤北产铀岩体的年代学和地球化学及铀成矿机制研究[D].南京:南京大学.
    周新民.2007.南岭地区晚中生代花岗岩成因与岩石圈动力学演化[M].北京:科学出版社:101-651.
    赵振华,包志伟,张伯友.1998.湘南中生代玄武岩类地球化学特征[J].中国科学(D辑),28(增刊):102-112.
    朱捌,邓平,凌洪飞,等.2009.粤北红山岩体形成时代及成因研究[J].铀矿地质,25(6):321-329.
    赵葵东,李吉人,凌洪飞,等.2013.江西省峡江铀矿床两期印支期花岗岩的年代学、岩石地球化学和岩石成因[J].岩石学报,29(12):4349-4361.
    Altherr R,Holl A,Hegner E,et al.2000.High-potassium,calc-alkaline I-type plutonism in the European Variscides:northern Vosges(France)and northern Schwarzwald(Germany)[J].Lithos,50(1):51-73.
    Andersen T.2002.Correction of common lead in U-Pb analyses that do not report204Pb[J].Chemical Geology,192:59-79.
    Bau M.1996.Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems:evidence from Y/Ho,Zr/Hf,and lanthanide tetrad effect[J].Contributions to Mineralogy and Petrology,123(3):323-333.
    Bouseily A M E and Sokkary A A E.1975.The relation between Rb,Ba and Sr in gramtic rocks[J].Chemical Geology,16(3):207-219.
    Chappell B W.1999.Aluminium saturation in I-and S-type granites and the characterizaion of fractionated haplogranites[J].Lithos,46(3):535-551.
    Clemens J D.2003.S-type granitic magmas-petrogenetic issues,models and evidence[J].Earth-Science Reviews,61(1):1-18.
    Chung S L,Cheng H,Jahn B,et al.1997.Major and trace element,and Sr-Nd isotope constraints on the origin of Paleogene volcanism in South China prior to the South China Sea opening[J].Lithos,40(2):203-220.
    El Bouseily A M and El Sokkary A A.1975.The relation between Rb,Ba and Sr in granitic rocks[J].Chemical Geology,16(3):207-219.
    King P L,White A J R,Chappell B W,et al.1997.Characterization and origin of aluminous A-type granites from the Lachlan Fold Belt,southeastern Australia[J].Journal of Petrology,38(3):371-391.
    Liegeois J P,Navez J,Hertogen J,et al.1998.Contrasting origin of post-collisional high-K calc-alkaline and shoshonitic versus alkaline and peralkaline granitoids:The use of sliding normalization[J].Lithos,45(1):1-28.
    Maniar P D and Piccoli P M.1989.Tectonic discrimination of granitoids[J].Geological Society of America Bulletin,101(5):635-643.
    Middlemost E A K.1985.Magmas and Magmatic Rocks[M].London:Longman:1-226.
    Middlemost E A K.1994.Naming materials in the magma/igneous rock system[J].Earth Science Reviews,37(3):215-224.
    Rudnick R L and Gao R.2003.Composition of the Continental Crust[M].Treatise on geochemistry,3:1-64.
    Shu L,Deng P,Wang B,et al.2004.Lithology,kinematics and geochronology related to Late Mesozoic basin-mountain evolution in the Nanxiong-Zhuguang area,South China[J].Science in China(D),47(8):673-688.
    Sun S S and Mc Donough W F.1989.Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes[J].Geological Society,London,Special Publications,42(1):313-345.
    Sylvester P J.1998.Post-collisional strongly peraluminous granites[J].Lithos,45(1):29-44.
    Taylor S R and Mc Lennan S M.1985.The Continental Crust:Its Composition and Evolution[M].Blackwell:Oxford Press:1-312.
    Watson E B,Harrison T M.1983.Zircon saturation revisited:temperature and composition effects in a variety of crustal magma types[J].Earth and Planetary Science Letters,64(2):295-304.
    Whalen J B,Currie K L and Chappell B W.1987.A-type granites:geochemical characteristics,discrimination and petrogenesis[J].Contributions to Mineralogy and Petrology,95(4):407-419.
    Xu X,O'Reilly S Y,Griffin W L,et al.2005.Relict Proterozoic basement in the Nanling Mountains(SE China)and its tectonothermal overprinting[J].Tectonics,24(2),doi:10.1029/2004TC001652.
    Zhou X M and Li W X.2000.Origin of Late Mesozoic igneous rocks in Southeastern China:implications for lithosphere subduction and underplating of mafic magmas[J].Tectonophysics,326(3):269-287.
    Zhou X M,Sun T,Shen W Z,et al.2006.Petrogenesis of Mesozoic granitoids and volcanic rocks in South China:a response to tectonic evolution[J].Episodes,29(1):26-33.
    (1)核工业中南地质局三〇六地质大队.1996.东岭幅热水幅1:5万区调报告.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700