天然发酵产物γ-聚谷氨酸修饰金纳米星及其pH响应性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Poly-(γ-glutamic acid) modified star-like gold nanoparticles and their pH sensitivity
  • 作者:关桦楠 ; 龚德状 ; 宋岩 ; 韩博林 ; 梁金钟 ; 王薇 ; 宇佳
  • 英文作者:GUAN Huanan;GONG Dezhuang;SONG Yan;HAN Bolin;LIANG Jinzhong;WANG Wei;YU Jia;College of Food Engineering,Harbin University of Commerce;College of Forestry,Northeast Forestry University;
  • 关键词:星状金纳米粒子 ; 聚谷氨酸 ; pH敏感 ; 静电吸附 ; 天然发酵
  • 英文关键词:star-like gold nanoparticles;;poly-(γ-glutamic acid);;pH sensitive;;electrostatic adsorption;;natural fermentation
  • 中文刊名:SPFX
  • 英文刊名:Food and Fermentation Industries
  • 机构:哈尔滨商业大学食品工程学院;东北林业大学林学院;
  • 出版日期:2019-04-09 08:46
  • 出版单位:食品与发酵工业
  • 年:2019
  • 期:v.45;No.384
  • 基金:国家自然科学基金资助项目(31871747;31201376);; 黑龙江省自然科学基金项目(C2016034);; 中国博士后基金资助项目(2014T70304; 2013M531009);; 黑龙江省普通本科高等学校青年创新人新才培养计划(UNPYSCT-2016060);; 哈尔滨商业大学科研项目(17XN026);哈尔滨商业大学研究生创新项目资助(YJSCX2017-462HSD; YJSCX2018-538HSD)
  • 语种:中文;
  • 页:SPFX201912007
  • 页数:5
  • CN:12
  • ISSN:11-1802/TS
  • 分类号:45-49
摘要
采用天然发酵产物γ-聚谷氨酸修饰星状金纳米粒子,构建一种简单高效的pH比色体系。以十六烷基三甲基溴化铵(hexadecyl trimethyl ammonium bromide,CTAB)为还原剂,制备带有正电荷的金纳米星,通过静电吸附作用自组装表面带有负电荷的聚谷氨酸,并对其理化性质进行表征;再采用比色法和荧光光谱法评估其对不同pH的响应性能。结果表明,所制备的金纳米星的平均粒径为(28. 93±8. 96) nm,表面电势为21 mV;当pH(5~12)高于聚谷氨酸等电点(PI=4~5)时,粒子出现聚集,颜色由紫变蓝,荧光强度衰弱;而当pH低于等电点时,颜色由紫变红直至无色,荧光强度减弱。γ-聚谷氨酸修饰的金纳米星因其所具有的pH敏感性,可将其应用于食品加工、生物分析和药物缓释等领域。
        This study aimed to develop a rapid and simple p H-sensitive colorimetric system based on poly-(γ-glutamic acid)-modified gold nanoparticles(PGA-AuNPs). Electrostatic self-assembly technique was used to assemble negatively charged PGA to the surface of positively charged cetyltrimethylammonium bromide(CTAB)-reduced star like Au NPs. The physicochemical properties of PGA-AuNPs were investigated,and its sensitivity to pH was evaluated by both colorimetry and fluorescence spectrometry. The results showed that the mean diameter of PGA-AuNPs was(28. 93 ± 8. 96) nm with 21 mV surface potential. The color of PGA-AuNPs changed from purple to blue and fluorescence intensity gradually weakened at pH 5 to 12,which was higher than its isoelectric point(pKa = 4-5). At pH lower than its p Ka,its color changed from purple to red and eventually to colorless,along with gradual decline in the fluorescence intensity. In conclusion,the p H-sensitive PGA-AuNPs indicates its potential applications in food processing,bioanalysis and drug delivery.
引文
[1]方燕,马琳琳,陕多亮,等.石墨烯-金纳米粒子复合膜修饰电极的制备及对双酚A的测定[J].高等学校化学学报,2015,36(8):1 491-1 497.
    [2]蒋思文,李霞,张月皎,等.不同粒径、超均匀球形金纳米粒子合成及其表面增强拉曼散射效应研究[J].光谱学与光谱分析,2016,36(1):99-103.
    [3]CROWE M,TIAN Z,ZHANG P,et al.Pristine graphene modulation of vertical colloidal deposition for gold nanoparticle wires[J].Colloids&Surfaces A:Physicochemical&Engineering Aspects,2018,544(5):159-164.
    [4]KABOUDIN B,KHANMOHAMMADI H,KAZEMI F.Polymer supported gold nanoparticles:Synthesis and characterization of functionalized polystyrene-supported gold nanoparticles and their application in catalytic oxidation of alcohols in water[J].Applied Surface Science,2017,425:400-406.
    [5]DUES-MAS M J,SORIANO M L,RUIZ-PALOMERO C,et al.Modified nanocellulose as promising material for the extraction of gold nanoparticles[J].Microchemical Journal,2018,138:379-383.
    [6]JEYABHARATHI C,ZANDER M,SCHOLZ F.Underpotential deposition of lead on quasi-spherical and faceted gold nanoparticles[J].Journal of Electroanalytical Chemistry,2017,819:159-162.
    [7]MENON S,RAJESHKUMAR S,KUMAR V.A review on biogenic synthesis of gold nanoparticles,characterization,and its applications[J].Resource-Efficient Technologies,2017,3(4):516-527.
    [8]KHALIL T T,BAZZI R,ROUX S,et al.The contribution of hydrogen peroxide to the radiosensitizing effect of gold nanoparticles[J].Colloids and Surfaces B:Biointerfaces,2019,175:606-613.
    [9]BRANAGAN D,BRESLIN C B.Electrochemical detection of glucose at physiological p H using gold nanoparticles deposited on carbon nanotubes[J].Sensors and Actuators B:Chemical,2019,282:490-499.
    [10]LIU J,CUI T,DING Y,Biomimetic gold nanoparticles[J].Composites Communications,2018,10:209-216.
    [11]SALABAT A,MIRHOSEINI F.A novel and simple microemulsion method for synthesis of biocompatible functionalized gold nanoparticles[J].Journal of Molecular Liquids,2018,268:849-853.
    [12]王卫国,王卫,赵永亮,等.γ-聚谷氨酸的研究及应用进展[J].河南工业大学学报(自然科学版),2016,37(2):117-122.
    [13]CAO M,FENG J,SIRISANSANEEYAKUL S,et al.Genetic and metabolic engineering for microbial production of poly-γ-glutamic acid[J].Biotechnology Advances,2018,36(5):1 424-1 433.
    [14]BAJESTANI M I,MOUSAVI S M,MOUSAVI S B,et al.Purification of extra cellular poly-γ-glutamic acid as an antibacterial agent using anion exchange chromatography[J].International Journal of Biological Macromolecules,2018,113:142-149.
    [15]ZHANG M,YANG J,YANG Q,et al.Fluorescence studies on the aggregation behaviors of collagen modified with NHS-activated poly(γ-glutamic acid)[J].International Journal of Biological Macromolecules,2018,112:1 156-1 163.
    [16]KIM H C,KIM M K,PARK W H.Polyelectrolyte complex nanofibers from poly(γ-glutamic acid)and fluorescent chitosan oligomer[J].International Journal of Biological Macromolecules,2018,118(Pt A):238-243.
    [17]ZHANG R L,XU S,ZHU Y,et al.Molecularly imprinted nanohybrids based on dopamine-modified poly(γ-glutamic acid)for electrochemical sensing of melamine[J].Biosensors&Bioelectronics,2016,85:381-386.
    [18]JAIMES-AGUIRRE L,MORALES-AVILA E,OCAMPO-GARCA B E,et al.Biodegradable poly(D,L-lactide-coglycolide)/poly(L-γ-glutamic acid)nanoparticles conjugated to folic acid for targeted delivery of doxorubicin[J].Materials Science&Engineering:C,2017,76(1):743-751.
    [19]THAWEECHAI T,KAEWVILAI A.Benzoxazine grafted poly(γ-Glutamic acid)functional material:Synthesis,characterization and photophysical properties[J].Materials Chemistry and Physics,2019,227(1):117-122.
    [20]GUAN H N,LIU X F,WANG W,et al.Direct colorimetric biosensing of mercury(Ⅱ)ion based on aggregation of poly-(γ-glutamic acid)-functionalized gold nanoparticles[J].Spectrochimica Acta Part A:Molecular&Biomolecular Spectroscopy,2014,121(5):527-532.
    [21]GUAN H,WANG W,LIU X,et al.Real-time visualization of colorimetric probe for p H-sensitive based on poly-(γ-glutamic acid)-functionalized gold nanoparticles[J].Colloids&Surfaces A Physicochemical&Engineering Aspects,2014,448(1):147-153.
    [22]LEE J S,LEE H G.Chitosan/poly-γ-glutamic acid nanoparticles improve the solubility of lutein[J].International Journal of Biological Macromolecules,2016,85:9-15.
    [23]SHIMAF,AKAGI T,UTO T,et al.Manipulating the antigen-specific immune response by the hydrophobicity of amphiphilic poly(γ-glutamic acid)nanoparticles[J].Biomaterials,2013,34(37):9 709-9 716.
    [24]KUO Y C,YU H W.Polyethyleneimine/poly-(γ-glutamic acid)/poly(lactide-co-glycolide)nanoparticles for loading and releasing antiretroviral drug[J].Colloids and Surfaces B:Biointerfaces,2011,88(1):158-164.
    [25]INBARAJV B S,CHEN B H.Dye adsorption characteristics of magnetite nanoparticles coated with a biopolymer poly(γ-glutamic acid)[J].Bioresource Technology,2011,102(19):8 868-8 876.
    [26]PARK S B,SAKAMOTO J,SUNG M H,et al.p H-controlled degradation and thermal stability of a porous poly(γ-glutamic acid)monolith crosslinked with an oxazolinefunctionalized polymer[J].Polymer Degradation and Stability,2014,99:99-104.
    [27]KUMAR R,PAL P.Fermentative production of poly(γ-glutamic acid)from renewable carbon source and downstream purification through a continuous membrane-integrated hybrid process[J].Bioresource Technology,2015,177:141-148.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700