黄土高原羊圈沟小流域人工物种和自然物种径向生长对气候变化的响应差异
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Climate effect on the radial growth of introduced and native tree species in the Yangjuangou catchment of the Loess Plateau
  • 作者:韦景树 ; 李宗善 ; 焦磊 ; 陈维梁 ; 伍星 ; 王晓春 ; 王帅
  • 英文作者:WEI Jingshu;LI Zongshan;JIAO Lei;CHEN Weiliang;WU Xing;WANG Xiaochun;WANG Shuai;State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences;University of the Chinese Academy of Sciences;Shaanxi Normal University;Center For Ecological Research,Northeast Forestry University;Beijing State Key Laboratory of Earth Surface Processes and Resource Ecology,Faculty of Geographical Science,Beijing Normal University;
  • 关键词:黄土高原 ; 径向生长 ; 气候响应 ; 年轮指数 ; PDSI ; 植被恢复
  • 英文关键词:Chinese loess plateau;;radial growth;;tree-ring index;;climate response;;PDSI;;vegetation restorationa
  • 中文刊名:STXB
  • 英文刊名:Acta Ecologica Sinica
  • 机构:中国科学院生态环境研究中心城市与区域生态国家重点实验室;中国科学院大学;陕西师范大学;东北林业大学林学院生态研究中心;北京师范大学地表过程与资源生态国家重点实验室;
  • 出版日期:2018-08-24 09:40
  • 出版单位:生态学报
  • 年:2018
  • 期:v.38
  • 基金:国家自然科学基金项目(41571503);; 国家重点研发计划项目(2016YFC0501602);; 中国科学院科技网络服务计划项目(KFJ-STSZDTP-036)
  • 语种:中文;
  • 页:STXB201822017
  • 页数:11
  • CN:22
  • ISSN:11-2031/Q
  • 分类号:166-176
摘要
为揭示黄土高原人工和自然物种径向生长对气候变化的响应差异,在延安羊圈沟小流域分别获取人工和自然物种的树木年轮材料并构建标准年表,其中人工物种为刺槐(Robinia pseudoacacia)和柠条(Caragana korshinskii),自然物种为山杏(Armeniaca sibirica)和荆条(Vitex negundo var. heterophylla),并对年表中的气候信号进行了统计分析。结果表明:1)人工物种年表中的气候信号较强,主要表现在5—8月份,与温度呈负相关关系(刺槐:r=-0.427—-0.427,P<0.05;柠条:r=-0.738—-0.227,P<0.05),与降雨则呈正相关关系,但相关系数未达到显著性水平;自然物种年表中的气候信号较弱,与温度和降雨的相关关系均较低; 2)不同于自然物种,人工物种树轮年表还与去年夏季(7—9月份)温度(负相关)和降水(正相关)存在相关关系,表明人工物种树木生长对气候因子存在一定滞后性; 3)人工物种树轮年表与PDSI干旱指数在各月份均维持正相关关系,在生长季(刺槐4—9月、柠条4—8月)达到显著水平(刺槐:r=0.481—0.704,P<0.05;柠条:r=0.314—0.610,P<0.05);而自然物种年表与PDSI干旱指数的相关关系较弱,均未达到相关性水平。从各年表与气候要素(温度、降雨、PDSI)响应强度来看,黄土高原人工物种树木生长受水分胁迫显著,且以刺槐最为明显,其次是柠条;自然物种树木生长则没有明显干旱胁迫的影响,仅山杏生长受一定水分胁迫影响,荆条生长则与各气候要素关系较弱,水分胁迫对其生长的影响已很小。本研究的结果表明黄土高原人工物种生长明显受到水分条件限制,而自然恢复物种生长则受水分条件影响较小,能适应黄土高原干旱半干旱气候条件。
        A considerable challenge faced by the largest Grain-to-Green Programme of the Chinese Loess Plateau( CLP) is whether planted species can adapt to semi-arid climates. Our project aimed to explore the adaption characteristics of introduced vegetation under warming and drying climates in the Yangjuangou catchment of the Loess Plateau. We analyzed and commpred the differences of inter-annual radial growth responding to climate change between introduced and native tree species. Based on dendrochronological methods,we collected tree-ring samples and established ring-width chronologies for both introduced( Robinia pseudoacacia,Caragana korshinskii) and native( Armeniaca sibirica, Vitex negundo var.heterophylla) species. Relationships between the environmental factors( temperature, precipitation, Palmer Drought Severity Index( PDSI)) and tree-ring index were determined using correlation analyses. The results showed that: 1) The tree-ring width series of introduced species had significantly passive correlations with May—August temperatures( R.pseudoacacia:-0.511 to-0.427; C. korshinskii:-0.738 to-0.227; P<0.05) and positive correlations with May—August precipitation; tree-ring series of native species were also negatively correlated with the temperature and positively correlated with precipitation,but not significantly; 2) Different from those of native species,the tree-ring width series of introduced species showed a relationship with the temperature and precipitation from the growing season of the previous summer( July—September),indicating that the environmental factors had a lag-effect on the growth of the introduced species; 3)The tree-ring width series of introduced species maintained positive correlations with PDSI each month with the highest correlation coefficients( R. pseudoacacia: 0.481 to 0.704; C. korshinskii: 0.314 to 0.610; P<0.05) in the growing season( R. pseudoacacia April—September,C. korshinskii April—August). However,there was a weak correlation that did not reach a significant level between the native species and PDSI; 4) The tree-ring chronologies showed a specific intensity response to environmental factors( temperature,precipitation,PDSI),introduced species were strongly negatively affected by water stress in the CLP semi-arid region,with R. pseudoacacia affected the most followed by C. korshinskii; however,native trees were only weakly affected by drought,where A. sibirica growth was normal in the severe drought condition,and V. negundo var. heterophylla was the most drought tolerant species and relatively robust to the effects of climate change. In conclusion,introduced species were strongly negatively affected by water stress, suggesting their growth would be unsustainable in the future,and native trees were weakly affected by drought,and could adapt to the climate change trends in the CLP semi-arid area.
引文
[1]Fu B J,Chen L D,Ma K M,Zhou H F,Wang J.The relationships between land use and soil conditions in the hilly area of the loess plateau in northern Shaanxi,China.CATENA,2000,39(1):69-78.
    [2]Chen L D,Wei W,Fu B J,Lu Y H.Soil and water conservation on the loess plateau in china:review and perspective.Progress in Physical Geography,2007,31(4):389-403.
    [3]LüY H,Fu B J,Feng X M,Zeng Y,Liu Y,Chang R Y,Sun G,Wu B F.A policy-driven large scale ecological restoration:quantifying ecosystem services changes in the Loess Plateau of China.PLoS One,2012,7(2):e31782.
    [4]Chen Y P,Wang K B,Lin Y S,Shi W Y,Song Y,He X H.Balancing green and grain trade.Nature Geoscience,2015,8(10):739-741.
    [5]Wang S,Fu B J,Piao S L,LüY H,Ciais P,Feng X M,Wang Y F.Reduced sediment transport in the Yellow River due to anthropogenic changes.Nature Geoscience,2016,9(1):38-41.
    [6]高海东,庞国伟,李占斌,程圣东.黄土高原植被恢复潜力研究.地理学报,2017,72(5):863-874.
    [7]王力,邵明安,侯庆春.土壤干层量化指标初探.水土保持学报,2000,14(4):87-90.
    [8]刘江华.黄土高原刺槐人工林生长特征及其天然化程度评价[D].杨凌:中国科学院研生院(教育部水土保持与生态环境研究中心),2008.
    [9]刘恩田,赵忠,宋西德,张永,张晶晶,严尚凯,李玉新.渭北黄土高原刺槐林健康评价指标体系的构建.西北农林科技大学学报:自然科学版,2010,38(10):67-75.
    [10]梁非凡,朱清科,王露露,李萍,郑学良,赵彦敏.陕北黄土区油松径向生长对气候因子的响应.西北农林科技大学学报:自然科学版,2015,43(5):33-41.
    [11]Feng X M,Fu B J,Piao S L,Wang S,Ciais P,Zeng Z Z,LüY H,Zeng Y,Li Y,Jiang X H,Wu B F.Revegetation in China's Loess Plateau is approaching sustainable water resource limits.Nature Climate Change,2016,6(11):1019-1022.
    [12]侯庆春,韩蕊莲,韩仕锋.黄土高原人工林草地“土壤干层”问题初探.中国水土保持,1999,(5):11-14.
    [13]王力,邵明安.黄土高原退耕还林条件下的土壤干化问题.世界林业研究,2004,17(4):57-60.
    [14]Wang Q X,Wang M B,Fan X H,Qin Z D,Wang M B.Change trends of temperature and precipitation in the Loess Plateau Region of China,1961-2010.Global and Planetary Change,2012,92-9338-147.
    [15]邵明安,贾小旭,王云强,朱元骏.黄土高原土壤干层研究进展与展望.地球科学进展,2016,31(1):14-22.
    [16]吴祥定.树木年轮与气候变化.北京:气象出版社,1990.
    [17]芦晓明,梁尔源.灌木年轮学研究进展.生态学报,2013,33(5):1367-1374.
    [18]Chen F,Yuan Y J,Wei W S,Yu S L,Fan Z,Zhang R B,Zhang T W,Shang H M.Erratum to:Tree-ring-based reconstruction of precipitation in the Changling Mountains,China,since A.D.1691.International Journal of Biometeorology,2012,56(4):765-774.
    [19]Chen F,Yuan Y J,Zhang T W,Linderholm H W.Annual precipitation variation for the southern edge of the Gobi Desert(China)inferred from tree rings:linkages to climatic warming of twentieth century.Natural Hazards,2016,81(2):939-955.
    [20]Kang S Y,Yang B,Qin C.Recent tree-growth reduction in north central China as a combined result of a weakened monsoon and atmospheric oscillations.Climatic Change,2012,115(3/4):519-536.
    [21]Yi L,Yu H J,Ge J Y,Lai Z P,Xu X Y,Qin L,Peng S Z.Reconstructions of annual summer precipitation and temperature in north-central China since 1470 AD based on drought/flood index and tree-ring records.Climatic Change,2012,110(1/2):469-498.
    [22]Fang K Y,Chen D,Gou X H,D'Arrigo R,Davi N.Influence of non-climatic factors on the relationships between tree growth and climate over the Chinese Loess Plateau.Global and Planetary Change,2015,132:54-63.
    [23]李秧秧,石辉,邵明安.黄土丘陵区乔灌木叶水分利用效率及与水力学特性关系.林业科学,2010,46(2):67-73.
    [24]Shi S L,Li Z S,Wang H,von Arx G,Lüu Y H,Wu X,Wang X C,Liu G H,Fu B J.Roots of forbs sense climate fluctuations in the semi-arid Loess Plateau:Herb-chronology based analysis.Scientific Reports,2016,6:28435.
    [25]Cook E R,Kairiukstis L A.Methods of Dendrochronology:Applications in the Environmental Sciences.New York:Springer,1990.
    [26]Stokes M A,Smiley T L.An Introduction to Tree-Ring Dating.Chicago:University of Chicago Press,1968.
    [27]Holmes R L.Computer-assisted quality control in tree-ring dating and measurement.Tree-Ring Bulletin,1983,43:51-67.
    [28]Cook E R,Holmes R L.Users Manual for AR-STAN.Tucson,USA:Laboratory of Tree-Ring Research,University of Arizona,1986.
    [29]Fritts H C.Tree Rings and Climate.London:Academic Press,1976.
    [30]Kendall M G,Gibbons J D.Rank Correlation Methods.5th ed.London:Edward Arnold,1990.
    [31]Biondi F,Waikul K.DENDROCLIM2002:a C++program for statistical calibration of climate signals in tree-ring chronologies.Computers&Geosciences,2004,30(3):303-311.
    [32]Wigley T M L,Briffa K R,Jones P D.On the average value of correlated time series,with applications in dendroclimatology and hydrometeorology.Journal of Climatology and Applied Meteorology,1984,23(2):201-213.
    [33]Allen C D,Macalady A K,Chenchouni H,Bachelet D,Mc Dowell N,Vennetier M,Kitzberger T,Rigling A,Breshears D D,Hogg E H,Gonzalez P,Fensham R,Zhang Z,Castro J,Demidova N,Lim J H,Allard G,Running S W,Cobb N.A global overview of drought and heatinduced tree mortality reveals emerging climate change risks for forests.Forest Ecology and Management,2010,259(4):660-684.
    [34]Liang E Y,Leuschner C,Dulamsuren C,Wagner B,Hauck M.Global warming-related tree growth decline and mortality on the north-eastern Tibetan plateau.Climatic Change,2016,134(1/2):163-176.
    [35]贺敏慧,杨保,秦春,刘晶晶,康淑媛.青藏高原东北部与南部地区树木径向生长对气候要素的响应---以祁丰和林周树轮为例.中国沙漠,2013,33(4):1117-1123.
    [36]郭明明,张远东,王晓春,刘世荣.川西米亚罗林区主要树木生长对气候响应的差异.应用生态学报,2015,26(8):2237-2243.
    [37]Palmer W C.Meteorological drought.Washington D C:U S Department of Commerce Weather Bureau,1965.
    [38]Liu H Y,Park Williams A,Allen C D,Guo D L,Wu X C,Anenkhonov O A,Liang E Y,Sandanov D V,Yin Y,Qi Z H,Badmaeva N K.Rapid warming accelerates tree growth decline in semi-arid forests of Inner Asia.Global Change Biology,2013,19(8):2500-2510.
    [39]Jiang Y,Wang B Q,Dong M Y,Huang Y M,Wang M C,Wang B.Response of daily stem radial growth of Platycladus orientalis to environmental factors in a semi-arid area of North China.Trees,2015,29(1):87-96.
    [40]李广起,白帆,桑卫国.长白山红松和鱼鳞云杉在分布上限的径向生长对气候变暖的不同响应.植物生态学报,2011,35(5):500-511.
    [41]常永兴,陈振举,张先亮,白学平,赵学鹏,李俊霞,陆旭.气候变暖下大兴安岭落叶松径向生长对温度的响应.植物生态学报,2017,41(3):279-289.
    [42]Jiao L,Jiang Y,Wang M C,Kang X Y,Zhang W T,Zhang L N,Zhao S D.Responses to climate change in radial growth of Picea schrenkiana along elevations of the eastern Tianshan Mountains,northwest China.Dendrochronologia,2016,40:117-127.
    [43]刘洪滨,邵雪梅.利用树轮重建秦岭地区历史时期初春温度变化.地理学报,2003,58(6):879-884.
    [44]Mc Dowell N,Pockman W T,Allen C D,Breshears D D,Cobb N,Kolb T,Plaut J,Sperry J,West A,Williams D G,Yepez E A.Mechanisms of plant survival and mortality during drought:why do some plants survive while others succumb to drought?New Phytologist,2008,178(4):719-739.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700