基于三维粗糙元的新型边界层转捩控制技术研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:RESEARCH ON A NEW TRANSITION CONTROL TECHNOLOGY BASED ON THREE-DIMENSIONAL ELEMENTS
  • 作者:李峰 ; 高超 ; 赵子杰 ; 任旭东
  • 英文作者:LI Feng;GAO Chao;ZHAO Zi-jie;REN Xu-dong;National Key Laboratory of Aerodynamic Design and Research, Northwestern Polytechnical University;
  • 关键词:三维粗糙元 ; 转捩控制 ; 风洞实验 ; 附加阻力 ; 尺度效应
  • 英文关键词:3-D roughness elements;;transition control;;wind tunnel experiment;;additional drag airfoil;;scale effect
  • 中文刊名:GCLX
  • 英文刊名:Engineering Mechanics
  • 机构:西北工业大学翼型叶栅空气动力学国家重点实验室;
  • 出版日期:2018-01-25
  • 出版单位:工程力学
  • 年:2018
  • 期:v.35
  • 基金:国家自然科学基金项目(11402209);; 航空科学基金项目(2015ZD53053);; 中央高校基本科研业务费专项资金项目(3102016ZY001);; 陕西省自然科学基础研究计划项目(2016JQ1023);; 装备预研基金项目(61422010401)
  • 语种:中文;
  • 页:GCLX201801021
  • 页数:11
  • CN:01
  • ISSN:11-2595/O3
  • 分类号:233-242+252
摘要
三维离散型粗糙元是一种具有广阔应用前景的新型边界层转捩诱导与控制技术。针对二维粗糙带转捩位置滞后、难以控制横流转捩的固有缺陷,提出了一种基于三维离散型粗糙元的新型边界层转捩技术。理论估算了离散型粗糙元的外形参数,研制成功了固化快、易于成型且附着力强的粗糙元配方及高精度制作工艺。选用二维翼型和三维组合体模型,采用测压、测力、升华法和红外成像法,风洞实验验证了离散型粗糙带的转捩和附加阻力特性。通过数值计算研究了粗糙元的尺度效应,获得了粗糙元直径d、高度k和间距l对其转捩特性的影响规律。研究结果表明,该新型离散型粗糙带附加阻力小,转捩位置准确,性能可靠、稳定。该文所得成果为固定转捩风洞实验与层流控制创建了一种新的技术手段,同时也为进一步开展离散型粗糙元的转捩机理研究提供了参考依据。
        Three-dimensional discrete roughness, with a wide application prospect, will become a new type of boundary layer transition induction and control technology. To eliminate the transition position lag and cross-flow transition difficulty for 2-D roughness, a new fixed transition technology based on discrete roughness elements has been developed. The shape parameters of roughness elements of rough spots are calculated. A fast curing, easy molding, grinding and difficult deformation formula is presented and the high precision manufacturing technology for discrete roughness elements is established. Using 2-D airfoil and 3-D wing-body combination models, through pressure and force test, sublimation and infrared imaging methods, the transition and additional drag characteristics are verified by wind tunnel tests. The scale effect of diameter d, height k and spacing l of the elements on the transition characteristics is studied by numerical simulation. The results show that the new discrete roughness has the advantages of a small additional drag, high transition location accuracy and reliable performance. The accomplishment of this project provides a new way for fixed transition wind tunnel experiment and important reference for the further transition mechanism research.
引文
[1]黄勇,钱丰学,于昆龙,何彬华,畅利侠,林学东.基于柱状粗糙元的边界层人工转捩试验研究[J].实验流体力学,2006,20(3):59―62.Huang Yong,Qian Fengxue,Yu Kunlong,He Binhua,Chang Lixia,Lin Xuedong.Experimental investigation on boundary-layer artificial transition based on transonic trip disk[J].Journal of Experiments in Fluid Mechanics,2006,20(3):59―62.(in Chinese)
    [2]李悦立,李栋,杨永,左岁寒.后掠机翼横流驻波及其谐波研究[J].实验流体力学实验流体力学,2010,24(3):25―28.Li Yueli,Li Dong,Yang Yong,Zuo Suihan.Study on the swept wing crossflow stationary wave and its harmonics[J].Journal of Experiments in Fluid Mechanics,2010,24(3):25―28.(in Chinese)
    [3]李轶明,颜大椿.二维单一粗糙元对边界层转捩影响的实验[J].北京大学学报,2005,41(1):71―75.Li Yiming,Yan Dachun.An experimental investigation on the effect of single two-dimensional roughness elements on boundary-layer transition[J].Journal of Peking University,2005,41(1):71―75.(in Chinese)
    [4]Juillen J C,Arnal D.Experimental and theoretical study of transition phenomena on an infinite swept wing[R].The French Aerospace Lab ONERA,Frence,1990,No.51/5018.
    [5]薛大文,陈志华,孙晓晖,陈耀慧.翼型绕流分离的微楔控制[J].工程力学,2014,31(8):217―222.Xue Dawen,Chen Zhihua,Sun Xiaohui,Chen Yaohui.Micro-ramp control of the boundary separation induced by the flow past an airfoil[J].Engineering Mechanics,2014,31(8):217―222.(in Chinese)
    [6]Radeztsky R H Jr,Reibert M S,Saric W S.Development of stationary crossflow vortices on a swept wing[R].AIAA Fluid Dynamics Conference,Colorado Springs,CO,United States,AIAA 1994-2373,1994.
    [7]Muller B,Bippes H.Experimental study of instability modes in a three-dimensional boundary layer.In:Proc AGARD Symp On Fluid Dynamics of ThreeDimensional Turbulent Sheer Flows and Transition[R].Cesme,Turkey,AGARD C-P 438,1988.
    [8]Deyhle H,Bippes H.Disturbance growth in an unstable three-dimensional boundary-layer and its dependence on environmental conditions[J].Journal of Fluid Mechanics,1996,316:73―113.
    [9]Reibert M S.Nonlinear stability saturation,and transition in crossflow-dominated boundary layer[D].USA:Arizona State University,1996.
    [10]Reibert M S,Saric W S.Review of swept wing transition[R].28th Fluid Dynamics Conference,Snowmass Village,CO,United States,AIAA 1997-1816,1997.
    [11]Reibert M S,Saric W S,Carrillo R B Jr.Experiments in nonlinear saturation of stationary crossflow vortices in a swept-wing boundary layer[R].34th Aerospace Sciences Meeting and Exhibit,Reno,NV,United States,AIAA1996-0184,1996.
    [12]Crouch J D.Theoretical studies on receptivity of boundary layers[R].AIAA Fluid Dynamics Conference,Colorado Springs,CO,United States,AIAA 1994-2224,1994.
    [13]Collis S S,Lele S K.Receptivity to surface roughness near a swept leading edge[J].Journal of Fluid Mechanics,1999,380:141―168.
    [14]Robert S,Downs III,Edward B,White,Nicholas A.Denissen.Transient growth and transition induced by random distributed roughness[J].AIAA Journal,2008,46(2):451―462.
    [15]Nathaniel D Varano,Roger L,Simpson.Structure of turbulent boundary layers and surface pressure fluctuations with sparse roughness[R].48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition,Orlando,FL,United States,AIAA 2010-700,2010.
    [16]Olaf Marxen,Gianluca Iaccarino.Numerical simulation of the effect of a roughness element on high-speed boundary-layer instability[R].38th AIAA Fluid Dynamics Conference and Exhibit,Seattle,Washington,United States,AIAA 2008-4400,2008.
    [17]Chang Chau-Lyan,Meelan Choudhari.Hypersonic viscous flow over large roughness elements[R].47th AIAA Aerospace Sciences Meeting,Orlando,FL,United States,AIAA 2009-0173,2009.
    [18]Meelan Choudhari,Fei Li,Minwei Wu,Chang Chau-Lyan.Laminar-turbulent transition behind discrete roughness elements in a high-speed boundary layer[R].48th AIAA Aerospace Sciences Meeting,Orlando,FL,United States,AIAA 2010-1575,2010.
    [19]Plogmann B,Wuurz W,Kruamer E.Interaction of a laminar boundary layer with a cylindrical roughness element near an airfoil leading edge[R].42nd AIAA Fluid Dynamics Conference and Exhibit,New Orleans,LA,United States,AIAA 2012-3077,2012.
    [20]Iyer P S,Mahesh K.High-speed boundary layer transition induced by a discrete roughness element[J].Journal of Fluid Mechanics,2013,729:524―562.
    [21]Tullio N D,Paredes P,Sandham N D,et al.Laminar-turbulent transition induced by a discrete roughness element in a suppersonic boundary layer[J].Journal of Fluid Mechanics,2013,735:613―646.
    [22]Edward B White,Douglas Kutz,Justin Freels,John P Hidore.Leading-edge roughness effects on 633-418airfoil performance[R].49th AIAA Aerospace Sciences Meeting,Orlando,FL,United States,AIAA 2011-352,2011.
    [23]赵子杰,高超,张正科.新型人工转捩技术研究及实验验证[J].航空学报,2015,36(6):1830―1838.Zhao Zijie,Gao Chao,Zhang Zhengke.An innovative artificial transition technique and its validation througn wind tunnel test[J].Acta Aeronautica et Astronautica Sinica,2015,36(6):1830―1838.(in Chinese)
    [24]任旭东,赵子杰,高超,李峰.一种新型转捩技术在跨音速风洞中的应用[J].实验力学,2013,28(3):314―319.Ren Xudong,Zhao Zijie,Gao Chao,Li Feng.Application of new transition technique in transonic wind tunnel[J].Journal of Experimental Mechanics,2013,28(3):314―319.(in Chinese)
    [25]任旭东,赵子杰,高超,李峰.NACA0012翼型抖振现象实验研究[J].工程力学,2015,32(5):236―242.Ren Xudong,Zhao Zijie,Gao Chao,Li Feng.Experimental study on the buffet phenomenon of NACA0012 airfoil[J].Engineering Mechanics,2015,32(5):236―242.(in Chinese)
    [26]Braslow A,Knox E.Simplified method for determination of critical height of distributed roughness particles for boundary-layer transition at mach numbers from 0 to 5[R].Technical Report Archive&Image Library,United States,NACA TN 4363,1958:82―83.
    [27]Harris C.Two-dimensional aerodynamics of the NACA0012 airfoil in the langley 8-foot transonic pressure tunnel[R].Technical Report Archive&Image Library,United States,NACA TM 81927,1981:1―8.
    [28]Dajana D,Aleksandar V,?or?e V.Testing of AGARD-B calibration model in the T-38 transonic wind tunnel[J].Scientific Technical Review,2006,10(2):52―62.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700