壁面粗糙度对高超声速进气道气动性能的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of Wall Roughness on Aerodynamic Performance of Hypersonic Inlet
  • 作者:张锦昇 ; 袁化成 ; 卢杰 ; 黄国平
  • 英文作者:ZHANG Jin-sheng;YUAN Hua-cheng;LU Jie;HUANG Guo-ping;College of Engery and Power Engineering,Nanjing University of Aeronautics and Astronautics;Jiangxi Hongdu Aviation Industry Group;
  • 关键词:高超声速进气道 ; 壁面粗糙度 ; 气动特性 ; 起动特性 ; 数值仿真
  • 英文关键词:Hypersonic inlet;;Wall roughness;;Aerodynamic performance;;Start performance;;Numerical simulation
  • 中文刊名:TJJS
  • 英文刊名:Journal of Propulsion Technology
  • 机构:南京航空航天大学能源与动力学院;江西洪都航空工业集团;
  • 出版日期:2018-06-22 14:29
  • 出版单位:推进技术
  • 年:2018
  • 期:v.39;No.254
  • 基金:中国航天科技集团公司航天科技创新基金;; 中央高校基本科研业务费(NZ2016103);; 国家自然科学基金(11772155);; 南京航空航天大学研究生创新基地(实验室)开放基金(kfjj20160204)
  • 语种:中文;
  • 页:TJJS201808011
  • 页数:10
  • CN:08
  • ISSN:11-1813/V
  • 分类号:87-96
摘要
为探究壁面粗糙度对于高超声速进气道气动性能的影响,采用经过校验的数值仿真和理论分析相结合的方法进行研究。结果显示:同一飞行马赫数下,随着壁面粗糙度的增加,进气道的流量系数、总压恢复系数和出口马赫数逐渐降低,而静压比、压差阻力系数、摩擦阻力系数以及起动马赫数则逐渐增大;不同飞行马赫数/不同钝化半径下,进气道性能参数随壁面粗糙度的变化规律相似,均表现出较好的拟合规律,据此获得的拟合公式及光滑壁面进气道的气动性能可预估不同壁面粗糙度下进气道的气动性能;就本文研究的进气道而言,当壁面相对粗糙度从0增加至0.625%时,进气道起动马赫数从4.25增加至4.85。壁面粗糙度增加,导致进气道沿程附面层增厚是进气道气动性能参数出现上述变化规律的主要原因。
        In order to study the effects of wall roughness on aerodynamic performance of hypersonic inlet,numerical simulation which had been verified and theoretical analysis were carried out. The results indicated that at the same Mach number,as the wall roughness increased,the mass flow coefficient,the total-pressure recovery coefficient and Mach number of inlet's exit all declined while the static pressure ratio,the pressure drag coefficient,the friction drag coefficient and the start Mach number all raised. Under different Mach numbers or blunt radius,the aerodynamic performance of the inlet was similar while the wall roughness changed. Through curve fitting,the relationship between each parameter of aerodynamic performance and wall roughness was presented,so that it can be predicted of the aerodynamic and starting performance of the inlet with rough wall according to the smooth one. For this article,the start Mach number of the inlet increased from 4.25 to 4.85 when the relative roughness increased from 0 to 0.625%. Thicker boundary layer because of the wall roughness was the main reason why the aerodynamic performance of the inlet changed partly.
引文
[1]Latin R M,Bowersox R D W.Flow Properties of a Supersonic Turbulent Boundary Layer with Wall Roughness[J].AIAA Journal,2000,38(10):1804-1821.
    [2]Latin R M.The Influence of Surface Roughness on Supersonic High Reynoolds Number Turbulent Boundary Layer Flow[D].Ohio:Air Force Institute of Technology,Wright-Patterson Air Force Base,1998.
    [3]Kerevanian G K,Sidorenko A,Benard E,et al.Effect of Height and Density of Roughness Elements on Turbulent Boundary Layers[R].AIAA 2003-645.
    [4]Yoon S,Na S,Wang Z J,et al.Flow and Heat Transfer over Rough Surface:Usefulness of 2-D Roughness-Resolved Simulations[R].AIAA 2006-0025.
    [5]Sahoo D,Schultze M,Smits A J,et al.Effects of Roughness on a Turbulent Boundary Layer in Hypersonic Flow[R].AIAA 2009-3678.
    [6]Jimenez J.Turbulent Flows Over Rough Walls[J].Annual Review Fluid Mechanics,2001,36(1):173-196.
    [7]Babinsky H,Inger G R.Effect of Surface Roughness on Unseparated Shock-Wave/Turbulent Boundary Layer Interactions[J].AIAA Jounral,2002,40(8):1567-1573.
    [8]Lin K C,Tam C J.Characterization of Shock Train Structures inside Constant-Area Isolators of Model Scramjet Combustors[R].AIAA 2006-816.
    [9]Duan Z W,Xiao Z X,Fu S.Direct Numerical Simulation of Hypersonic Transition Induced by an Isolated Cylindrical Roughness Element[J].Science China Physics,Mechanics&Astronomy,2014,57(12):2331-2345.
    [10]段志伟,肖志祥.粗糙元诱导的高超声速边界层转捩[J].航空学报,2016,37(8):2454-2463.
    [11]赵晓慧,邓小兵,毛枚良,等.高超声速进气道强制转捩流动的大涡模拟[J].航空学报,2016,37(8):2445-2453.
    [12]涂国华,燕振国,赵晓慧,等.SA和SST湍流模型对高超声速边界层强制转捩的适应性[J].航空学报,2014,36(5):1471-1479.
    [13]赵慧勇,周瑜,倪鸿礼,等.高超声速进气道边界层强制转捩试验[J].实验流体力学,2012,26(1):1-6.
    [14]黄勇,钱丰学,于昆龙,等.基于柱状粗糙元的边界层人工转捩试验研究[J].实验流体力学,2006,20(3):59-62.
    [15]张子明,倪鸿礼,赵慧勇.高超声速进气道钻石型强制转捩装置的转捩准则研究[J].推进技术,2017,38(9):1930-1935.(ZHANG Zi-ming,NI Hong-li,ZHAO Hui-yong.Research on Transition Criterion of Diamond Forced-Transition Trip for Hypersonic Inlet[J].Journal of Propulsion Technology,2017,38(9):1930-1935.)
    [16]王金光.二元高超声速进气道阻力特性研究[D].南京:南京航空航天大学,2011.
    [17]高亮杰.非等直截面及复杂环境下隔离段流动[D].南京:南京航空航天大学,2011.
    [18]苗辉,黄勇,谢法.流体热物性对粗糙微通道内传热性能的影响[J].推进技术,2012,33(4):625-630.(MIAO Hui,HUANG Yong,XIE Fa.Effects of Thermal Properties of the Working Fluid on Heat Transfer Characteristic in Rough Microchannels[J].Journal of Propulsion Technology,2012,33(4):625-630.)
    [19]Nikuradse J.Stromungsgesetze in Glatten and Rauhen Rohren[J].Work Rep,1933,(361):10-15.
    [20]Nikuradse J.Laws of Flow in Rough Pipes[M].Washington:National Advisory Committee for Aeronautics,1950.
    [21]陈懋章.粘性流体动力学基础[M].北京:高等教育出版社,2002.
    [22]White F K.粘性流体力学[M].魏中磊,甄思淼,译.北京:机械工业出版社,1982.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700