铜基硫族化合物热电材料(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Copper chalcogenide thermoelectric materials
  • 作者:魏天然 ; 覃玉婷 ; 邓婷婷 ; 宋庆峰 ; 江彬彬 ; 刘睿恒 ; 仇鹏 ; 史迅 ; 陈立东
  • 英文作者:Tian-Ran Wei;Yuting Qin;Tingting Deng;Qingfeng Song;Binbin Jiang;Ruiheng Liu;Pengfei Qiu;Xun Shi;Lidong Chen;State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences;University of Chinese Academy of Sciences;
  • 英文关键词:thermoelectric;;Cu-based chalcogenides;;sublattice;;transport properties
  • 中文刊名:SCMA
  • 英文刊名:中国科学:材料科学(英文版)
  • 机构:State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences;University of Chinese Academy of Sciences;
  • 出版日期:2019-01-01
  • 出版单位:Science China Materials
  • 年:2019
  • 期:v.62
  • 基金:supported by the National Key Research and Development Program of China (2018YFB0703600);; the National Natural Science Foundation of China (51625205);; the Key Research Program of Chinese Academy of Sciences (KFZD-SW-421);; Program of Shanghai Subject Chief Scientist (16XD1403900);; Youth Innovation Promotion Association, CAS (2016232);; Shanghai Sailing Program (18YF1426700).
  • 语种:英文;
  • 页:SCMA201901002
  • 页数:17
  • CN:01
  • ISSN:10-1236/TB
  • 分类号:14-30
摘要
铜基硫族化合物因其高性能、可调的输运性质、高丰度和低毒性,被认为是很有前景的新型热电材料,引起了研究者的广泛关注.本文总结了近年来铜基热电材料的研究进展,包括类金刚石结构材料、声子液体二元及多元化合物等.本文首先总体介绍了两套亚晶格的基本特征及其对热学、电学性质的影响:一方面,复杂晶体结构和无序、甚至液态化的亚晶格导致极低的热导率;另一方面,刚性亚晶格构成电荷传输通道,保证了较高的电学性能.然后,本文针对特定的几类材料体系,详细介绍了其典型结构特征与"结构-性能"构效关系,以及掺杂、固溶、能带结构调控和纳米结构设计等多尺度优化手段.最后,本文从材料研发和器件研制的角度评述了铜基硫族化合物作为热电材料的应用前景及相关进展.
        Cu-based chalcogenides have received increasing attention as promising thermoelectric materials due to their high efficiency, tunable transport properties, high elemental abundance and low toxicity. In this review, we summarize the recent research progress on this large family compounds covering diamond-like chalcogenides and liquid-like Cu_2X(X=S, Se, Te) binary compounds as well as their multinary derivatives. These materials have the general features of two sublattices to decouple electron and phonon transport properties. On the one hand, the complex crystal structure and the disordered or even liquid-like sublattice bring about an intrinsically low lattice thermal conductivity. On the other hand,the rigid sublattice constitutes the charge-transport network,maintaining a decent electrical performance. For specific material systems, we demonstrate their unique structural features and outline the structure-performance correlation.Various design strategies including doping, alloying, band engineering and nanostructure architecture, covering nearly all the material scale, are also presented. Finally, the potential of the application of Cu-based chalcogenides as high-performance thermoelectric materials is briefly discussed from material design to device development.
引文
1 Nolas G S,Sharp J,Goldsmid H J.Thermoelectrics:Basic Principles and New Materials Developments.Berlin:Springer,2001
    2 Uher C(eds.).Materials Aspect of Thermoelectricity.Boca Raton:CRC Press,2017
    3 Zhu T,Liu Y,Fu C,et al.Compromise and synergy in highefficiency thermoelectric materials.Adv Mater,2017,29:1605884
    4 Yang J,Xi L,Qiu W,et al.On the tuning of electrical and thermal transport in thermoelectrics:an integrated theory-experiment perspective.NPJ Comput Mater,2016,2:15015
    5 Slack G A.New Materials and Performance Limits for Thermoelectric Cooling.In:Rowe D M(eds.).CRC Handbook of Thermoelectrics.Boca Raton:CRC Press,1995:407-440
    6 Snyder GJ,Toberer ES.Complex thermoelectric materials.Nat Mater,2008,7:105-114
    7 He J,Tritt TM.Advances in thermoelectric materials research:Looking back and moving forward.Science,2017,357:eaak9997
    8 Tan G,Zhao LD,Kanatzidis MG.Rationally designing highperformance bulk thermoelectric materials.Chem Rev,2016,116:12123-12149
    9 Liu W,Yin K,Zhang Q,et al.Eco-friendly high-performance silicide thermoelectric materials.Natl Sci Rev,2017,4:611-626
    10 Liu W,Jie Q,Kim HS,et al.Current progress and future challenges in thermoelectric power generation:From materials to devices.Acta Mater,2015,87:357-376
    11 Li JF,Pan Y,Wu CF,et al.Processing of advanced thermoelectric materials.Sci China Technol Sci,2017,60:1347-1364
    12 Qiu P,Shi X,Chen L.Cu-based thermoelectric materials.Energy Storage Mater,2016,3:85-97
    13 Xiao XX,Xie WJ,Tang XF,et al.Phase transition and high temperature thermoelectric properties of copper selenide Cu2-xSe(0≤x≤0.25).Chin Phys B,2011,20:087201
    14 Liu H,Shi X,Xu F,et al.Copper ion liquid-like thermoelectrics.Nat Mater,2012,11:422-425
    15 Liu H,Yuan X,Lu P,et al.Ultrahigh thermoelectric performance by electron and phonon critical scattering in Cu2Se1-xIx.Adv Mater,2013,25:6607-6612
    16 He Y,Day T,Zhang T,et al.High thermoelectric performance in non-toxic earth-abundant copper sulfide.Adv Mater,2014,26:3974-3978
    17 He Y,Lu P,Shi X,et al.Ultrahigh thermoelectric performance in mosaic crystals.Adv Mater,2015,27:3639-3644
    18 He Y,Zhang T,Shi X,et al.High thermoelectric performance in copper telluride.NPG Asia Mater,2015,7:e210
    19 Zhao L,Wang X,Fei FY,et al.High thermoelectric and mechanical performance in highly dense Cu2-xS bulks prepared by a melt-solidification technique.J Mater Chem A,2015,3:9432-9437
    20 Zhao LL,Wang XL,Wang JY,et al.Superior intrinsic thermoelectric performance with zT of 1.8 in single-crystal and meltquenched highly dense Cu2-xSe bulks.Sci Rep,2015,5:7671
    21 Nunna R,Qiu P,Yin M,et al.Ultrahigh thermoelectric performance in Cu2Se-based hybrid materials with highly dispersed molecular CNTs.Energy Environ Sci,2017,10:1928-1935
    22 Olvera AA,Moroz NA,Sahoo P,et al.Partial indium solubility induces chemical stability and colossal thermoelectric figure of merit in Cu2Se.Energy Environ Sci,2017,10:1668-1676
    23 Zhao K,Blichfeld AB,Chen H,et al.Enhanced thermoelectric performance through tuning bonding energy in Cu2Se1-xSxliquidlike materials.Chem Mater,2017,29:6367-6377
    24 Zhao K,Qiu P,Song Q,et al.Ultrahigh thermoelectric performance in Cu2-ySe0.5S0.5liquid-like materials.Mater Today Phys,2017,1:14-23
    25 Yang L,Chen ZG,Han G,et al.Te-Doped Cu2Se nanoplates with a high average thermoelectric figure of merit.J Mater Chem A,2016,4:9213-9219
    26 Butt S,Xu W,Farooq MU,et al.Enhanced thermoelectricity in high-temperatureβ-phase copper(I)selenides embedded with Cu2Te nanoclusters.ACS Appl Mater Interfaces,2016,8:15196-15204
    27 Gahtori B,Bathula S,Tyagi K,et al.Giant enhancement in thermoelectric performance of copper selenide by incorporation of different nanoscale dimensional defect features.Nano Energy,2015,13:36-46
    28 Liu ML,Chen IW,Huang FQ,et al.Improved thermoelectric properties of Cu-doped quaternary chalcogenides of Cu2CdSnSe4.Adv Mater,2009,21:3808-3812
    29 Shi XY,Huang FQ,Liu ML,et al.Thermoelectric properties of tetrahedrally bonded wide-gap stannite compounds Cu2ZnSn1-x InxSe4.Appl Phys Lett,2009,94:122103
    30 Liu R,Xi L,Liu H,et al.Ternary compound CuInTe2:a promising thermoelectric material with diamond-like structure.Chem Commun,2012,48:3818
    31 Plirdpring T,Kurosaki K,Kosuga A,et al.Chalcopyrite CuGaTe2:A high-efficiency bulk thermoelectric material.Adv Mater,2012,24:3622-3626
    32 Zhang J,Liu R,Cheng N,et al.High-performance pseudocubic thermoelectric materials from non-cubic chalcopyrite compounds.Adv Mater,2014,26:3848-3853
    33 Liu R,Chen H,Zhao K,et al.Entropy as a gene-like performance indicator promoting thermoelectric materials.Adv Mater,2017,29:1702712
    34 Luo Y,Yang J,Jiang Q,et al.Progressive regulation of electrical and thermal transport properties to high-performance Cu InTe2thermoelectric materials.Adv Energy Mater,2016,6:1600007
    35 Liu Y,García G,Ortega S,et al.Solution-based synthesis and processing of Sn-and Bi-doped Cu3SbSe4nanocrystals,nanomaterials and ring-shaped thermoelectric generators.J Mater Chem A,2016,5:2592-2602
    36 Skoug EJ,Cain JD,Morelli DT.High thermoelectric figure of merit in the Cu3SbSe4-Cu3SbS4solid solution.Appl Phys Lett,2011,98:261911
    37 Liu R,Qin Y,Cheng N,et al.Thermoelectric performance of Cu1-x-δAgxInTe2diamond-like materials with a pseudocubic crystal structure.Inorg Chem Front,2016,3:1167-1177
    38 Li Y,Liu G,Cao T,et al.Enhanced thermoelectric properties of Cu2SnSe3by(Ag,In)-Co-doping.Adv Funct Mater,2016,26:6025-6032
    39 Shi X,Xi L,Fan J,et al.Cu-Se bond network and thermoelectric compounds with complex diamondlike structure.Chem Mater,2010,22:6029-6031
    40 Li Y,Liu G,Li J,et al.High thermoelectric performance of Indoped Cu2SnSe3prepared by fast combustion synthesis.New JChem,2016,40:5394-5400
    41 Ma R,Liu G,Li J,et al.Effect of secondary phases on thermoelectric properties of Cu2SnSe3.Ceramics Int,2017,43:7002-7010
    42 Suekuni K,Kim FS,Nishiate H,et al.High-performance thermoelectric minerals:Colusites Cu26V2M6S32(M=Ge,Sn).Appl Phys Lett,2014,105:132107
    43 Kikuchi Y,Bouyrie Y,Ohta M,et al.Vanadium-free colusites Cu26A2Sn6S32(A=Nb,Ta)for environmentally friendly thermoelectrics.J Mater Chem A,2016,4:15207-15214
    44 Bouyrie Y,Ohta M,Suekuni K,et al.Enhancement in the thermoelectric performance of colusites Cu26A2E6S32(A=Nb,Ta;E=Sn,Ge)using E-site non-stoichiometry.J Mater Chem C,2017,5:4174-4184
    45 Lu X,Morelli DT,Xia Y,et al.High performance thermoelectricity in earth-abundant compounds based on natural mineral tetrahedrites.Adv Energy Mater,2013,3:342-348
    46 Heo J,Laurita G,Muir S,et al.Enhanced thermoelectric performance of synthetic tetrahedrites.Chem Mater,2014,26:2047-2051
    47 Lu X,Morelli DT,Wang Y,et al.Phase stability,crystal structure,and thermoelectric properties of Cu12Sb4S13-xSexsolid solutions.Chem Mater,2016,28:1781-1786
    48 Lu X,Morelli DT,Xia Y,et al.Increasing the thermoelectric figure of merit of tetrahedrites by co-doping with nickel and zinc.Chem Mater,2015,27:408-413
    49 Prem Kumar DS,Chetty R,Femi OE,et al.Thermoelectric properties of Bi doped tetrahedrite.J Elec Mater,2017,46:2616-2622
    50 Zhao LD,Berardan D,Pei YL,et al.Bi1-xSrxCuSeO oxyselenides as promising thermoelectric materials.Appl Phys Lett,2010,97:092118
    51 Liu Y,Zhao LD,Liu Y,et al.Remarkable enhancement in thermoelectric performance of BiCuSeO by Cu deficiencies.J Am Chem Soc,2011,133:20112-20115
    52 Li F,Li JF,Zhao LD,et al.Polycrystalline BiCuSeO oxide as a potential thermoelectric material.Energy Environ Sci,2012,5:7188-7195
    53 Li J,Sui J,Pei Y,et al.A high thermoelectric figure of merit ZT>1in Ba heavily doped BiCuSeO oxyselenides.Energy Environ Sci,2012,5:8543-8547
    54 Lan JL,Zhan B,Liu YC,et al.Doping for higher thermoelectric properties in p-type BiCuSeO oxyselenide.Appl Phys Lett,2013,102:123905
    55 Pei YL,He J,Li JF,et al.High thermoelectric performance of oxyselenides:intrinsically low thermal conductivity of Ca-doped BiCuSeO.NPG Asia Mater,2013,5:e47
    56 Sui J,Li J,He J,et al.Texturation boosts the thermoelectric performance of BiCuSeO oxyselenides.Energy Environ Sci,2013,6:2916-2920
    57 Pei YL,Wu H,Wu D,et al.High thermoelectric performance realized in a BiCuSeO system by improving carrier mobility through 3D modulation doping.J Am Chem Soc,2014,136:13902-13908
    58 Li Z,Xiao C,Fan S,et al.Dual vacancies:an effective strategy realizing synergistic optimization of thermoelectric property in BiCuSeO.J Am Chem Soc,2015,137:6587-6593
    59 Liu Y,Zhao LD,Zhu Y,et al.Synergistically optimizing electrical and thermal transport properties of BiCuSeO via a dual-doping approach.Adv Energy Mater,2016,6:1502423
    60 Ren GK,Wang SY,Zhu YC,et al.Enhancing thermoelectric performance in hierarchically structured BiCuSeO by increasing bond covalency and weakening carrier-phonon coupling.Energy Environ Sci,2017,10:1590-1599
    61 Yang D,Su X,Yan Y,et al.Manipulating the combustion wave during self-propagating synthesis for high thermoelectric performance of layered oxychalcogenide Bi1-xPbxCuSeO.Chem Mater,2016,28:4628-4640
    62 Toberer ES,Baranowski LL,Dames C.Advances in thermal conductivity.Annu Rev Mater Res,2012,42:179-209
    63 Tritt T M.Thermal Conductivity:Theory,Properties and Applications.New York:Plenum,2004
    64 Kittel C.Introduction to Solid State Physics.New York:John Wiley&Sons Inc.,1996
    65 Toberer ES,Zevalkink A,Snyder GJ.Phonon engineering through crystal chemistry.J Mater Chem,2011,21:15843-15852
    66 Wang X,Qiu P,Zhang T,et al.Compound defects and thermoelectric properties in ternary CuAgSe-based materials.J Mater Chem A,2015,3:13662-13670
    67 Qiu P,Zhang T,Qiu Y,et al.Sulfide bornite thermoelectric material:a natural mineral with ultralow thermal conductivity.Energy Environ Sci,2014,7:4000-4006
    68 Weldert KS,Zeier WG,Day TW,et al.Thermoelectric transport in Cu7PSe6with high copper ionic mobility.J Am Chem Soc,2014,136:12035-12040
    69 Aydemir U,P?hls JH,Zhu H,et al.YCuTe2:a member of a new class of thermoelectric materials with CuTe4-based layered structure.J Mater Chem A,2016,4:2461-2472
    70 Bhattacharya S,Basu R,Bhatt R,et al.CuCrSe2:a high performance phonon glass and electron crystal thermoelectric material.J Mater Chem A,2013,1:11289-11294
    71 Li W,Ibá?ez M,Zamani RR,et al.Cu2HgSnSe4nanoparticles:synthesis and thermoelectric properties.CrystEngComm,2013,15:8966
    72 Chetty R,Dadda J,de Boor J,et al.The effect of Cu addition on the thermoelectric properties of Cu2CdGeSe4.Intermetallics,2015,57:156-162
    73 Suzumura A,Watanabe M,Nagasako N,et al.Improvement in thermoelectric properties of Se-Free Cu3SbS4compound.J Elec Mater,2014,43:2356-2361
    74 Li J,Tan Q,Li JF.Synthesis and property evaluation of CuFeS2-x as earth-abundant and environmentally-friendly thermoelectric materials.J Alloys Compd,2013,551:143-149
    75 Li W,Lin S,Zhang X,et al.Thermoelectric properties of Cu2SnSe4with intrinsic vacancy.Chem Mater,2016,28:6227-6232
    76 Vining CB,Laskow W,Hanson JO,et al.Thermoelectric properties of pressure-sintered Si0.8Ge0.2thermoelectric alloys.J Appl Phys,1991,69:4333-4340
    77 Caillat T,Borshchevsky A,Fleurial JP.Properties of single crystalline semiconducting CoSb3.J Appl Phys,1996,80:4442-4449
    78 Liu HL,He Y,Shi X,et al.Recent progress in“phonon-liquid”thermoelectric materials.Chin Sci Bull(Chin Ver),2013,58:2603-2608
    79 Qiu W,Xi L,Wei P,et al.Part-crystalline part-liquid state and rattling-like thermal damping in materials with chemical-bond hierarchy.Proc Natl Acad Sci USA,2014,111:15031-15035
    80 Qiu W,Wu L,Ke X,et al.Diverse lattice dynamics in ternary CuSb-Se compounds.Sci Rep,2015,5:13643
    81 Li B,Wang H,Kawakita Y,et al.Liquid-like thermal conduction in intercalated layered crystalline solids.Nat Mater,2018,17:226-230
    82 Voneshen DJ,Walker HC,Refson K,et al.Hopping time scales and the phonon-liquid electron-crystal picture in thermoelectric copper selenide.Phys Rev Lett,2017,118:145901
    83 Skoug EJ,Morelli DT.Role of lone-pair electrons in producing minimum thermal conductivity in nitrogen-group chalcogenide compounds.Phys Rev Lett,2011,107:235901
    84 Sun Y,Xi L,Yang J,et al.The“electron crystal”behavior in copper chalcogenides Cu2X(X=Se,S).J Mater Chem A,2017,5:5098-5105
    85 Zou D,Xie S,Liu Y,et al.Electronic structures and thermoelectric properties of layered BiCuOCh oxychalcogenides(Ch=S,Se and Te):first-principles calculations.J Mater Chem A,2013,1:8888-8896
    86 Do D,Ozolins V,Mahanti SD,et al.Physics of bandgap formation in Cu-Sb-Se based novel thermoelectrics:the role of Sb valency and Cu d levels.J Phys-Condens Matter,2012,24:415502
    87 Qin Y,Qiu P,Liu R,et al.Optimized thermoelectric properties in pseudocubic diamond-like CuGaTe2compounds.J Mater Chem A,2016,4:1277-1289
    88 Song Q,Qiu P,Hao F,et al.Quaternary pseudocubic Cu2TMSnSe4(TM=Mn,Fe,Co)chalcopyrite thermoelectric materials.Adv Electron Mater,2016,2:1600312
    89 Zeier WG,Zevalkink A,Gibbs ZM,et al.Thinking like a chemist:intuition in thermoelectric materials.Angew Chem Int Ed,2016,55:6826-6841
    90 Zhao K,Blichfeld AB,Eikeland E,et al.Extremely low thermal conductivity and high thermoelectric performance in liquid-like Cu2Se1-xSxpolymorphic materials.J Mater Chem A,2017,5:18148-18156
    91 Zhao K,Zhu C,Qiu P,et al.High thermoelectric performance and low thermal conductivity in Cu2-yS1/3Se1/3Te1/3liquid-like materials with nanoscale mosaic structures.Nano Energy,2017,42:43-50
    92 Xie Y.Mosaic crystals leading a new route to achieve ultrahigh thermoelectric performance.Sci China Mater,2015,58:431-432
    93 Ge ZH,Liu X,Feng D,et al.High-performance thermoelectricity in nanostructured earth-abundant copper sulfides bulk materials.Adv Energy Mater,2016,6:1600607
    94 Jiang B,Qiu P,Eikeland E,et al.Cu8GeSe6-based thermoelectric materials with an argyrodite structure.J Mater Chem C,2017,5:943-952
    95 Qiu PF,Wang XB,Zhang TS,et al.Thermoelectric properties of Te-doped ternary CuAgSe compounds.J Mater Chem A,2015,3:22454-22461
    96 Bhattacharya S,Bohra A,Basu R,et al.High thermoelectric performance of(AgCrSe2)0.5(CuCrSe2)0.5nano-composites having all-scale natural hierarchical architectures.J Mater Chem A,2014,2:17122-17129
    97 Hwang JY,Mun HA,Kim SI,et al.Effects of doping on transport properties in Cu-Bi-Se-based thermoelectric materials.Inorg Chem,2014,53:12732-12738
    98 Ishiwata S,Shiomi Y,Lee JS,et al.Extremely high electron mobility in a phonon-glass semimetal.Nat Mater,2013,12:512-517
    99 Han CG,Zhang BP,Ge ZH,et al.Thermoelectric properties of ptype semiconductors copper chromium disulfide CuCrS2+x.JMater Sci,2013,48:4081-4087
    100 G?gor A,Pietraszko A,Kaynts D.Diffusion paths formation for Cu+ions in superionic Cu6PS5I single crystals studied in terms of structural phase transition.J Solid State Chem,2005,178:3366-3375
    101 Miyatani S,Suzuki Y.On the electric conductivity of cuprous sulfide:experiment.J Phys Soc Jpn,1953,8:680-681
    102 Ema Y.Cu electromigration effect on Cu2-xSe film properties.Jpn J Appl Phys,1990,29:2098-2102
    103 Bailey TP,Hui S,Xie H,et al.Enhanced ZT and attempts to chemically stabilize Cu2Se via Sn doping.J Mater Chem A,2016,4:17225-17235
    104 Qiu P,Agne MT,Liu Y,et al.Suppression of atom motion and metal deposition in mixed ionic/electronic conductors.Nat Commun,2018,9:2910
    105 Tang H,Sun FH,Dong JF,et al.Graphene network in copper sulfide leading to enhanced thermoelectric properties and thermal stability.Nano Energy,2018,49:267-273
    106 Li W,Ibá?ez M,Cadavid D,et al.Colloidal synthesis and functional properties of quaternary Cu-based semiconductors:Cu2HgGeSe4.J Nanopart Res,2014,16:2297
    107 Navrátil J,Kucek V,Plechá?ek T,et al.Thermoelectric properties of Cu2HgSnSe4-Cu2HgSnTe4solid solution.J Elec Materi,2014,43:3719-3725
    108 Pavan Kumar V,Guilmeau E,Raveau B,et al.A new wide band gap thermoelectric quaternary selenide Cu2MgSnSe4.J Appl Phys,2015,118:155101
    109 Ibá?ez M,Zamani R,LaLonde A,et al.Cu2ZnGeSe4nanocrystals:synthesis and thermoelectric properties.J Am Chem Soc,2012,134:4060-4063
    110 Doverspike K,Dwight K,Wold A.Preparation and characterization of copper zinc germanium sulfide selenide(Cu2ZnGeS4-y Sey).Chem Mater,1990,2:194-197
    111 Xie H,Su X,Zheng G,et al.The role of Zn in chalcopyrite CuFeS2:enhanced thermoelectric properties of Cu1-xZnxFeS2with in situ nanoprecipitates.Adv Energy Mater,2016,7:1601299
    112 Li D,Li R,Qin XY,et al.Co-precipitation synthesis of Sn and/or S doped nanostructured Cu3Sb1-xSnxSe4-ySywith a high thermoelectric performance.CrystEngComm,2013,15:7166-7170
    113 Wei TR,Wang H,Gibbs ZM,et al.Thermoelectric properties of Sn-doped p-type Cu3SbSe4:a compound with large effective mass and small band gap.J Mater Chem A,2014,2:13527-13533
    114 Cheng N,Liu R,Bai S,et al.Enhanced thermoelectric performance in Cd doped CuInTe2compounds.J Appl Phys,2014,115:163705
    115 Zhang J,Qin X,Li D,et al.Enhanced thermoelectric properties of Ag-doped compounds CuAgxGa1-xTe2(0≤x≤0.05).J Alloys Compd,2014,586:285-288
    116 Kucek V,Drasar C,Kasparova J,et al.High-temperature thermoelectric properties of Hg-doped CuInTe2.J Appl Phys,2015,118:125105
    117 Kucek V,Drasar C,Navratil J,et al.Thermoelectric properties of Ni-doped CuInTe2.J Phys Chem Solids,2015,83:18-23
    118 Shen J,Chen Z,lin S,et al.Single parabolic band behavior of thermoelectric p-type CuGaTe2.J Mater Chem C,2016,4:209-214
    119 Li Y,Zhang T,Qin Y,et al.Thermoelectric transport properties of diamond-like Cu1-xFe1+xS2tetrahedral compounds.J Appl Phys,2014,116:203705
    120 Li XY,Li D,Xin HX,et al.Effects of bismuth doping on the thermoelectric properties of Cu3SbSe4at moderate temperatures.JAlloys Compd,2013,561:105-108
    121 Yang C,Huang F,Wu L,et al.New stannite-like p-type thermoelectric material Cu3SbSe4.J Phys D-Appl Phys,2011,44:295404
    122 Skoug EJ,Cain JD,Majsztrik P,et al.Doping effects on the thermoelectric properties of Cu3SbSe4.Sci Adv Mat,2011,3:602-606
    123 Chetty R,Bali A,Mallik RC.Thermoelectric properties of indium doped Cu2CdSnSe4.Intermetallics,2016,72:17-24
    124 Kosuga A,Higashine R,Plirdpring T,et al.Effects of the defects on the thermoelectric properties of Cu-In-Te chalcopyrite-related compounds.Jpn J Appl Phys,2012,51:121803
    125 Wei TR,Li F,Li JF.Enhanced thermoelectric performance of nonstoichiometric compounds Cu3-xSbSe4by Cu deficiencies.JElec Mater,2014,43:2229-2238
    126 Goto Y,Naito F,Sato R,et al.Enhanced thermoelectric figure of merit in Stannite-Kuramite solid solutions Cu2+xFe1-xSnS4-y(x=0-1)with anisotropy lowering.Inorg Chem,2013,52:9861-9866
    127 Zeier WG,Heinrich CP,Day T,et al.Bond strength dependent superionic phase transformation in the solid solution series Cu2ZnGeSe4-xSx.J Mater Chem A,2014,2:1790-1794
    128 Berman R.Thermal Conduction in Solids.Oxford:Clarendon Press,1976
    129 Li Y,Meng Q,Deng Y,et al.High thermoelectric performance of solid solutions CuGa1-xInxTe2(x=0-1.0).Appl Phys Lett,2012,100:231903
    130 Skoug EJ,Cain JD,Morelli DT,et al.Lattice thermal conductivity of the Cu3SbSe4-Cu3SbS4solid solution.J Appl Phys,2011,110:023501
    131 Zeier WG,Pei Y,Pomrehn G,et al.Phonon scattering through a local anisotropic structural disorder in the thermoelectric solid solution Cu2Zn1-xFexGeSe4.J Am Chem Soc,2013,135:726-732
    132 Liu FS,Wang B,Ao WQ,et al.Crystal structure and thermoelectric properties of Cu2Cd1-xZnxSnSe4solid solutions.Intermetallics,2014,55:15-21
    133 Li Z,Xiao C,Zhu H,et al.Defect chemistry for thermoelectric materials.J Am Chem Soc,2016,138:14810-14819
    134 Chen H,Yang C,Liu H,et al.Thermoelectric properties of CuInTe2/graphene composites.CrystEngComm,2013,15:6648-6651
    135 Luo Y,Yang J,Jiang Q,et al.Large enhancement of thermoelectric performance of CuInTe2via a synergistic strategy of point defects and microstructure engineering.Nano Energy,2015,18:37-46
    136 Dong Y,Wang H,Nolas GS.Synthesis,crystal structure,and high temperature transport properties of p-type Cu2Zn1-xFexSnSe4.Inorg Chem,2013,52:14364-14367
    137 Dong Y,Wang H,Nolas GS.Synthesis and thermoelectric properties of Cu excess Cu2ZnSnSe4.Phys Status Solidi RRL,2014,8:61-64
    138 Cho JY,Shi X,Salvador JR,et al.Thermoelectric properties of ternary diamondlike semiconductors Cu2Ge1+xSe3.J Appl Phys,2010,108:073713
    139 Xi L,Zhang YB,Shi XY,et al.Chemical bonding,conductive network,and thermoelectric performance of the ternary semiconductors Cu2SnX3(X=Se,S)from first principles.Phys Rev B,2012,86:155201
    140 Fan J,Carrillo-Cabrera W,Akselrud L,et al.New monoclinic phase at the composition Cu2SnSe3and its thermoelectric properties.Inorg Chem,2013,52:11067-11074
    141 Fan J,Carrillo-Cabrera W,Antonyshyn I,et al.Crystal structure and physical properties of ternary phases around the composition Cu5Sn2Se7with tetrahedral coordination of atoms.Chem Mater,2014,26:5244-5251
    142 Tan Q,Sun W,Li Z,et al.Enhanced thermoelectric properties of earth-abundant Cu2SnS3via in doping effect.J Alloys Compd,2016,672:558-563
    143 Huang T,Yan Y,Peng K,et al.Enhanced thermoelectric performance in copper-deficient Cu2GeSe3.J Alloys Compd,2017,723:708-713
    144 Cho JY,Shi X,Salvador JR,et al.Thermoelectric properties and investigations of low thermal conductivity in Ga-doped Cu2GeSe3.Phys Rev B,2011,84:085207
    145 Shen Y,Li C,Huang R,et al.Eco-friendly p-type Cu2SnS3thermoelectric material:crystal structure and transport properties.Sci Rep,2016,6:32501
    146 Adhikary A,Mohapatra S,Lee SH,et al.Metallic ternary telluride with sphalerite superstructure.Inorg Chem,2016,55:2114-2122
    147 Vaqueiro P,Guélou G,Kaltzoglou A,et al.The influence of mobile copper ions on the glass-like thermal conductivity of copper-rich tetrahedrites.Chem Mater,2017,29:4080-4090
    148 Sun FH,Wu CF,Li Z,et al.Powder metallurgically synthesized Cu12Sb4S13tetrahedrites:phase transition and high thermoelectricity.RSC Adv,2017,7:18909-18916
    149 Barbier T,Lemoine P,Gascoin S,et al.Structural stability of the synthetic thermoelectric ternary and nickel-substituted tetrahedrite phases.J Alloys Compd,2015,634:253-262
    150 Lu X,Morelli D.The effect of Te substitution for Sb on thermoelectric properties of tetrahedrite.J Elec Materi,2014,43:1983-1987
    151 Kosaka Y,Suekuni K,Hashikuni K,et al.Effects of Ge and Sn substitution on the metal-semiconductor transition and thermoelectric properties of Cu12Sb4S13tetrahedrite.Phys Chem Chem Phys,2017,19:8874-8879
    152 Bouyrie Y,Sassi S,Candolfi C,et al.Thermoelectric properties of double-substituted tetrahedrites Cu12-xCoxSb4-yTeyS13.Dalton Trans,2016,45:7294-7302
    153 Sun FH,Dong J,Dey S,et al.Enhanced thermoelectric performance of Cu12Sb4S13-δtetrahedrite via nickel doping.Sci China Mater,2018,61:1209-1217
    154 Chetty R,Bali A,Mallik RC.Tetrahedrites as thermoelectric materials:an overview.J Mater Chem C,2015,3:12364-12378
    155 Kim FS,Suekuni K,Nishiate H,et al.Tuning the charge carrier density in the thermoelectric colusite.J Appl Phys,2016,119:175105
    156 Suekuni K,Tsuruta K,Kunii M,et al.High-performance thermoelectric mineral Cu12-xNixSb4S13tetrahedrite.J Appl Phys,2013,113:043712
    157 Lin H,Chen H,Shen JN,et al.Chemical modification and energetically favorable atomic disorder of a layered thermoelectric material TmCuTe2leading to high performance.Chem Eur J,2014,20:15401-15408
    158 Esmaeili M,Tseng YC,Mozharivskyj Y.Thermoelectric properties,crystal and electronic structure of semiconducting RECuSe2(RE=Pr,Sm,Gd,Dy and Er).J Alloys Compd,2014,610:555-560
    159 Yang G,Yao Y,Ma D.Structural,electronic,and thermoelectric properties of La2CuBiS5.Sci China Mater,2017,60:151-158
    160 Gulay LD,Daszkiewicz M,Shemet VY.Crystal structure of~RCu3S3and~RCuTe2(R=Gd-Lu)compounds.J Solid State Chem,2012,186:142-148
    161 Oudah M,Kleinke KM,Kleinke H.Thermoelectric properties of the quaternary chalcogenides BaCu5.9STe6and BaCu5.9SeTe6.Inorg Chem,2014,54:845-849
    162 Kurosaki K,Uneda H,Muta H,et al.Thermoelectric properties of potassium-dopedβ-BaCu2S2with natural superlattice structure.JAppl Phys,2005,97:053705
    163 Li J,Zhao LD,Sui J,et al.BaCu2Se2based compounds as promising thermoelectric materials.Dalton Trans,2015,44:2285-2293
    164 Zhao LD,He J,Berardan D,et al.BiCuSeO oxyselenides:new promising thermoelectric materials.Energy Environ Sci,2014,7:2900-2924
    165 Lan JL,Liu YC,Zhan B,et al.Enhanced thermoelectric properties of Pb-doped BiCuSeO ceramics.Adv Mater,2013,25:5086-5090
    166 Li F,Wei TR,Kang F,et al.Enhanced thermoelectric performance of Ca-doped BiCuSeO in a wide temperature range.JMater Chem A,2013,1:11942-11949
    167 Liu Y,Lan J,Xu W,et al.Enhanced thermoelectric performance of a BiCuSeO system via band gap tuning.Chem Commun,2013,49:8075-8077

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700