介孔SiO_2包覆Ag/ZIF-8核壳型催化材料的合成
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Synthesis of a Core-shell Structured Ag/ZIF-8 Catalyst with Mesoporous Silica Shell
  • 作者:肖珊珊 ; 欧阳逸挺 ; 李小云 ; 王朝 ; 吴攀 ; 邓兆 ; 陈丽华 ; 苏宝连
  • 英文作者:XIAO Shanshan;OUYANG Yiting;LI Xiaoyun;WANG Zhao;WU Pan;DENG Zhao;CHEN Lihua;SU Baolian;State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology;State Key Laboratory of Silicate Materials for Architectures,Wuhan University of Technology;
  • 关键词:ZIF-8 ; 介孔二氧化硅 ; Ag纳米颗粒 ; 核壳型结构 ; 催化性能
  • 英文关键词:ZIF-8;;Mesoporous silica;;Silver nanoparticles;;Core-shell;;Catalytic performance
  • 中文刊名:GDXH
  • 英文刊名:Chemical Journal of Chinese Universities
  • 机构:武汉理工大学材料复合新技术国家重点实验室;武汉理工大学硅酸盐建筑材料国家重点实验室;
  • 出版日期:2018-06-10
  • 出版单位:高等学校化学学报
  • 年:2018
  • 期:v.39
  • 基金:国家自然科学基金(批准号:21301133)资助~~
  • 语种:中文;
  • 页:GDXH201806019
  • 页数:7
  • CN:06
  • ISSN:22-1131/O6
  • 分类号:133-139
摘要
通过液相自组装制备了Ag/ZIF-8;进一步以十六烷基三甲基溴化铵(CTAB)为结构导向剂,在疏水Ag/ZIF-8颗粒表面包覆一层介孔二氧化硅(MS)壳,合成了具有核壳结构的Ag/ZIF-8@MS催化剂,并对其进行了结构和性能表征.结果表明,Ag/ZIF-8@MS具有均一的颗粒尺寸(Ag/ZIF-8@MS粒径约为100 nm,Ag粒径约为15 nm)、较高的比表面积(539 m~2/g)及较大的孔体积(0.64 m~3/g);透射电子显微镜表征结果表明,介孔二氧化硅表层厚度约为20 nm.于550℃煅烧后,催化剂结构转变成Ag/Zn O@MS核壳结构.以催化对硝基苯酚生成对氨基苯酚为模型反应,对2种结构的Ag催化剂的催化性能进行了测试.催化反应结果表明,核壳型结构Ag/ZIF-8@MS材料催化对硝基苯酚反应的转化率超过95%,证明了这种以ZIF-8为载体的核壳型材料的优势.
        The self-assembly technique was employed to sythesize the Ag nanoparticles on ZIF-8(Ag/ZIF-8).Cetyltrimethyl ammonium bromide(CTAB) was used as the structure-directing agent to facilitate mesoporous silica to coat on the surface of hydrophobic Ag/ZIF-8(Ag/ZIF-8@MS). The prepared Ag/ZIF-8@MS with a core-shell structure was characterized by a series of measurements. The results show that Ag/ZIF-8@ MS has a uniform particle size(Ag/ZIF-8@MS: ca. 100 nm,Ag: ca. 15 nm),high specific surface area(539 m~2/g)and large pore volume(0. 64 m~3/g). The TEM images indicate that the thickness of mesoporous silica shell is ca. 20 nm. The structure of catalyst is transformed into Ag/Zn O@ MS core-shell structure after calcination at550 ℃. Meanwhile,both of the Ag-baesd catalysts were tested for the reaction of 4-nitrophenol to prepare 4-aminophenol. The catalytic results showed that the conversion of 4-nitrophenol catalyzed by Ag/ZIF-8@ MS was more than 95%,which proves the advantage of the core-shell structure with ZIF-8 as a carrier.
引文
[1]Long J.R.,Yaghi O.M.,Chem.Soc.Rev.,2009,38(5),1213—1214
    [2]Du T.,Long Y.,Tang Q.,Li S.L.,Liu L.Y.,Chem.J.Chinese Universities,2017,38(2),225—230(杜涛,龙渊,汤琦,李生璐,刘丽影.高等学校化学学报,2017,38(2),225—230)
    [3]Duan C.J.,Cao Y.M.,Jie X.M.,Wang L.N.,Yuan Q.,Chem.J.Chinese Universities,2014,35(7),1584—1589(段翠佳,曹义鸣,介兴明,王丽娜,袁权.高等学校化学学报,2014,35(7),1584—1589)
    [4]Wang L.,Sun Y.X.,Miao Y.L.,Sun H.,Chem.J.Chinese Universities,2011,32(3),758—764(王琳,孙迎新,苗延霖,孙淮.高等学校化学学报,2011,32(3),758—764)
    [5]Xu D.,Xiao S.S.,Wu P.,Pan Y.,Chen L.H.,Su B.L.,Xue M.,Qiu S.L.,Chem.J.Chinese Universities,2018,39(1),19—24(徐丹,肖珊珊,吴攀,潘莹,陈丽华,苏宝连,薛铭,裘世纶.高等学校化学学报,2018,39(1),19—24)
    [6]Hu Y.P.,Shan D.L.,Lu X.Q.,Chem.J.Chinese Universities,2016,37(6),1082—1087(胡一平,陕多亮,卢小泉.高等学校化学学报,2016,37(6),1082—1087)
    [7]Zhao X.,Yin F.,Liu N.,Li G.,Fan T.,Chen B.,J.Mater.Sci.,2017,52(17),10175—10185
    [8]Liu Y.,Howarth A.J.,Vermeulen N.A.,Moon S.Y.,Hupp J.T.,Farha O.K.,Coord.Chem.Rev.,2016,346,101—111
    [9]Zheng C.C.,Chem.J.Chinese Universities,2013,34(11),2574—2579(郑成成.高等学校化学学报,2013,34(11),2574—2579)
    [10]Zhu L.,Liu X.Q.,Jiang H.L.,Sun L.B.,Chem.Rev.,2017,117(12),8129—8176
    [11]Lai Q.,Zhao Y.,Liang Y.,He J.,Chen J.,Adv.Funct.Mater.,2016,26(45),8334—8344
    [12]Abbasi Z.,Shamsaei E.,Leong S.K.,Ladewig B.,Zhang X.,Wang,H.,Microporous Mesoporous Mater.,2016,236,28—37
    [13]Aijaz A.,Fujiwara N.,Xu Q.,J.Am.Chem.Soc.,2014,136(19),6790—6793
    [14]Wang Z.,Wang G.,Louis C.,Delannoy L.,J.Catal.,2017,347,185—196
    [15]Wan Y.,Wang H.,Zhao Q.,Klingstedt M.,Terasaki O.,Zhao D.,J.Am.Chem.Soc.,2009,131(12),4541—4550
    [16]Ren J.,Hao P.,Sun W.,Shi R.,Liu S.,Chem.Eng.J.,2017,328,673—682
    [17]Wen C.Y.,Chen J.,Li M.,Xue Y.,Aslam S.,Subhan F.,Chen X.,Microchimica Acta,2017,184(10),3929—3936
    [18]Ding S.,Yan Q.,Jiang H.,Zhong Z.,Chen R.,Xing W.,Chem.Eng.J.,2016,296,146—153
    [19]Tang L.,Shi J.,Wu H.,Zhang S.,Liu H.,Zou H.,Jiang Z.,Nanotechnology,2017,28,365604-1—12
    [20]Mao H.,Zhang W.,Zhou W.,Zou B.,Zheng B.,Zhao S.,Huo F.,ACS Appl.Mater.Interf.,2017,9(29),24649—24654
    [21]Zhu Q.L.,Xu Q.,Chem.Soc.Rev.,2014,43(16),5468—5512
    [22]Gholampour N.,Chaemchuen S.,Hu Z.Y.,Mousavi B.,Van Tendeloo G.,Verpoort F.,Chem.Eng.J.,2017,322,702—709
    [23]Chen L.,Zhan W.,Fang H.,Cao Z.,Yuan C.,Xie Z.,Zheng L.,Chem.Eur.J.,2017,23(47),11397—11403
    [24]Yang J.,Zhao F.,Zeng B.,RSC Adv.,2016,6(28),23403—23410
    [25]Pradhan N.,Pal A.,Pal T.,Colloids Surf.A,2002,196(2),247—257
    [26]Wu X.Q.,Wu X.W.,Shen J.S.,Zhang H.W.,RSC Adv.,2014,4(90),49287—49294
    [27]Sahiner N.,Ozay H.,Ozay O.,Aktas N.,Appl.Catal.A:Gen.,2010,385(1),201—207
    [28]Babenko P.Y.,Meluzova D.S.,Shergin A.P.,Zinoviev A.N.,Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms,2017,406,460—464
    [29]Jang E.,Kim E.,Kim H.,Lee T.,Yeom H.J.,Kim Y.W.,Choi J.,J.Membr.Sci.,2017,540,430—439
    [30]Dong S.,Tong M.,Zhang D.,Huang T.,Sens.Actuators B:Chem.,2017,251,650—657
    [31]Han X.G.,Jiang Y.Q.,Xie S.F.,Kuang Q.,Zhou X.,Cai D.P.,Zheng L.S.,J.Phys.Chem.C,2010,114(22),10114—10118
    [32]Abdi J.,Vossoughi M.,Mahmoodi N.M.,Alemzadeh I.,Ultrason.Sonochem.,2017,39,550—564
    [33]Wu P.,Sun M.H.,Yu Y.,Peng Z.,Bulbula S.T.,Li Y.,Chen L.H.,Su,B.L.,RSC Adv.,2017,7(68),42627—42633
    [34]Sharma M.,Hazra S.,Basu S.,J.Colloid Interf.Sci.,2017,504,669—679
    [35]Tian Y.,Li W.,Zhao C.,Wang Y.,Zhang B.,Zhang Q.,Appl.Catal.B:Environ.,2017,213,136—146

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700