NS-DBD激励控制非细长三角翼前缘涡仿真研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical investigation on leading-edge vortex control for non-slender delta wing by nanosecond pulse dielectric barrier discharge actuation
  • 作者:赵光银 ; 梁华 ; 牛中国 ; 王学德
  • 英文作者:ZHAO Guangyin;LIANG Hua;NIU Zhongguo;WANG Xuede;Science and Technology on Plasma Dynamics Laboratory,Aeronautics Engineering College,Air Force Engineering University;Aerodynamics Research Institute,Aviation Industry Corporation of China;
  • 关键词:等离子体 ; 前缘涡 ; 三角翼 ; 流动控制 ; 纳秒脉冲介质阻挡放电
  • 英文关键词:plasma;;leading-edge vortex;;delta wing;;flow control;;nanosecond pulse dielectric barrier discharge(NS-DBD)
  • 中文刊名:HKDI
  • 英文刊名:Journal of Aerospace Power
  • 机构:空军工程大学航空工程学院航空等离子体动力学实验室;中国航空工业集团有限公司空气动力研究院;
  • 出版日期:2019-01-25 09:52
  • 出版单位:航空动力学报
  • 年:2019
  • 期:v.34
  • 基金:国家自然科学基金(11802341,11472306)
  • 语种:中文;
  • 页:HKDI201902018
  • 页数:11
  • CN:02
  • ISSN:11-2297/V
  • 分类号:174-184
摘要
通过在三角翼前缘施加纳秒脉冲介质阻挡放电(NS-DBD)激励唯象学模型,进行了47°后掠角钝前缘三角翼流动控制的仿真。分析了不同迎角下升力和阻力系数的变化、流场结构的变化、以及激励诱导旋涡的演化过程。研究表明:施加无量纲激励频率F+=1.44的NS-DBD激励后,可明显提高三角翼失速前后的升力系数;同时阻力系数也有所增加,变化趋势与实验结果一致。激励在前缘分离剪切层处诱导产生流向涡,改变了前缘剪切层结构,使其向内卷吸;激励后时均流场形成了明显的负压峰值,前缘涡附着线外移,吸力面回流区减小。
        Through applying phenomenological model of nanosecond pulse dielectric barrier discharge(NS-DBD)actuation to the leading edge of delta wing,the flow control simulation was conducted over a 47°blunt-edged delta wing.The variations of lift coefficients and drag coefficients at different attack angles,as well as the evolutions of flow structure and induced vortex,were analyzed.The results show that,if ignited at the reduced frequency of F+=1.44,the actuation can obviously improve the lift coefficients before and after stall,and the drag coefficients also increased,and kept consistent with the experimental results.Chordwise vortex induced by every actuation could change the structure of the leading-edgeseparated shear layer and cause it to curl inwards.There were obvious negative pressure peak values on the wing's upper surface for the time-averaged flow field with actuation.Also,the flow reattachment was promoted and the region of backflow was reduced under NSDBD actuation.
引文
[1] GRESHAM N T,WANG Z,GURSUL I.Vortex dynamics of free-to-roll slender and nonslender delta wings[J].Journal of Aircraft,2010,47(1):292-302.
    [2] MENG Xuanshi,QIAO Zhide,GAO Chao,et al.Effect of dorsal fin on symmetry of vortices over slender delta wing[J].AIAA Journal,2016,54(8):2277-2284.
    [3] WANG Jinjun,WANG Zhang.Experimental investigations on leading-edge vortex structures for flow over non-slender delta wings[J].Chinese Physics Letters,2008,7(25):2550-2553.
    [4]范洁川.空气动力学发展中值得关注的一些问题[J].气动研究与实验,2003,20(1):1-16.
    [5] GURSUL I,WANG Z,VARDAKI E.Review of flow control mechanisms of leading-edge vortices[J].Progress in Aerospace Sciences,2007,43(7):246-270.
    [6] MITCHELL A M,DLERY J.Research into vortex breakdown control[J].Progress in Aerospace Sciences,2001,37:385-418.
    [7]张鑫,黄勇,王勋年,等.超临界机翼介质阻挡放电等离子体流动控制[J].航空学报,2016,37(6):1733-1742.ZHANG Xin,HUANG Yong,WANG Xunnian,et al.Flow control on a supercritical wing using dielectric barrier discharge plasma actuator[J].Acta Aeronautica et Astronautica Sinica,2016,37(6):1733-1742.(in Chinese)
    [8] WANG J,LI Y H,XING F.Investigation on oblique shock wave control by arc discharge plasma in supersonic airflow[J].Journal of Applied Physics,2009,106(7):073307.1-073307.7.
    [9]杨瑞,罗振兵,夏智勋,等.高超声速导弹等离子体合成射流控制数值研究[J].航空学报,2016,37(6):1722-1732.YANG Rui,LUO Zhenbing,XIA Zhixun,et al.Numerical study of plasma synthetic jet control on hypersonic missile[J].Acta Aeronautica et Astronautica Sinica,2016,37(6):1722-1732.(in Chinese)
    [10]吴云,李应红.等离子体流动控制研究进展与展望[J].航空学报,2015,36(2):381-405.WU Yun,LI Yinghong.Progress and outlook of plasma flow control[J].Acta Aeronautica et Astronautica Sinica,2015,36(2):381-405.(in Chinese)
    [11]李应红,梁华,马清源,等.脉冲等离子体气动激励抑制翼型吸力面流动分离的实验[J].航空学报,2008,30(6):1429-1435.LI Yinghong,LIANG Hua,MA Qingyuan,et al.Experimental investigation on airfoil suction side flow separation by pulse plasma aerodynamic[J].Acta Aeronautica et Astronautica Sinica,2008,30(6):1429-1435.(in Chinese)
    [12]周朋辉,田希晖,车学科,等.不同压力下微秒脉冲表面介质阻挡放电流场实验[J].航空动力学报,2013,28(12):2691-2697.ZHOU Penghui,TIAN Xihui,CHE Xueke,et al.Experiment of airflow induced by microsecond pulse surface dielectric barrier discharge under pressure influences[J].Journal of Aerospace Power,2013,28(12):2691-2697.(in Chinese)
    [13] ROUPASSOV D V,NIKIPELOV A A,NUDNOVA M M,et al.Flow separation control by plasma actuator with nanosecond pulsed-periodic discharge[J].AIAA Journal,2009,47(1):168-185.
    [14] DEDRICK J,IM S R,CAPPELLI M A,et al.Surface discharge plasma actuator driven by apulsed 13.56 MHz-5kHz voltage waveform[J].Journal of Physics D(Applied Physics),2013,46(46):405201.
    [15]梁华,李应红,宋慧敏,等.多相等离子体气动激励抑制翼型失速分离的实验[J].航空动力学报,2011,26(4):867-873.LIANG Hua,LI Yinghong,SONG Huimin,et al.Experimental investigation on airfoil stall separation suppression by multiphase plasma aerodynamic actuation[J].Journal of Aerospace Power,2011,26(4):867-873.(in Chinese)
    [16]梁华,李应红,吴云,等.等离子体气动激励的数值仿真[J].高电压技术,2009,35(5):1071-1076.LIANG Hua,LI Yinghong,WU Yun,et al.Numerical simulation of plasma aerodynamic actuation[J].High Voltage Engineering,2009,35(5):1071-1076.(in Chinese)
    [17]车学科,聂万胜,周朋辉,等.亚微秒脉冲表面介质阻挡放电等离子体诱导连续漩涡的研究[J].物理学报,2013,62(2):279-288.CHE Xueke,NIE Wansheng,ZHOU Penghui,et al.Study on continuous vortices induced by sub-microsecond pulsed surface dielectric barrier discharge plasma[J].Acta Physica Sinica,2013,62(2):279-288.(in Chinese)
    [18]宋慧敏,吴韦韦,崔巍,等.射频放电等离子体气动激励特性的实验研究[J].高电压技术,2014,40(7):2044-2048.SONG Huimin,WU Weiwei,CUI Wei,et al.Experimental investigation on the characteristics of RF discharge plasma aerodynamic actuation[J].High Voltage Engineering,2014,40(7):2044-2048.(in Chinese)
    [19]赵光银,梁华,李应红,等.表面介质阻挡纳秒脉冲放电能量特性和诱导流动特性研究[J].中国科学技术科学,2015,45(11):1195-1206.ZHAO Guangyin,LIANG Hua,LI Yinghong,et al.Study of electrical characterization and induced flow by nanosecond pulsed dielectric barrier discharge actuator[J].Scientia Sinica Technologica,2015,45(11):1195-1206.(in Chinese)
    [20]李结,李华星,王健磊,等.纳秒脉冲等离子体对静止大气的激励特性[J].西北工业大学学报,2014,32(2):176-180.LI Jie,LI Huaxing,WANG Jianlei,et al.Characteristics comparison between AC-and NS-DBD plasma actuatoions in quiescent air[J].Journal of Northwestern Polytechnical University,2014,32(2):176-180.(in Chinese)
    [21]李应红,吴云,梁华,等.提高抑制流动分离能力的等离子体冲击流动控制原理[J].科学通报,2010,55(31):3060-3068.LI Yinghong,WU Yun,LIANG Hua,et al.The mechanism of plasma shock flow control for enhancing flow separation control capability[J].Chinese Science Bulletin(Chinese Ver),2010,55(31):3060-3068.(in Chinese)
    [22] RETHMEL C,LITTLE J,TAKASHIMA K,et al.Flow separation control over an airfoil with nanosecond pulse driven DBD plasma actuators[R].AIAA-2011-487,2011.
    [23]倪芳原,史志伟,杜海.纳秒脉冲等离子体激励器用于圆柱高速流动控制的数值模拟[J].航空学报,2014,34(3):657-665.NI Fangyuan,SHI Zhiwei,DU Hai.Numerical simulation of nanosecond pulsed plasma actuator for cylindrical highspeed flow control[J].Acta Aeronautica et Astronautica Sinica,2014,34(3):657-665.(in Chinese)
    [24] NISHIHARA M,TAKASHIMA K,RICH J W,et al.Mach 5bow shock control by a nanosecond pulse surface dielectric barrier discharge[J].Physics of Fluids,2011,23(6):066101.1-066101.11.
    [25] WU Yun,LI Yinghong,LIANG Hua,et al.Nanosecond pulsed discharge plasma actuation:characteristics and flow control performance[R].AIAA-2014-2118,2014.
    [26]化为卓,李应红,牛中国,等.低速三角翼纳秒脉冲等离子体激励实验[J].航空动力学报,2014,29(10):2331-2339.HUA Weizhuo,LI Yinghong,NIU Zhongguo,et al.Experiment on low-speed delta wing using nanosecond pulse plasma actuation[J].Journal of Aerospace Power,2014,29(10):2331-2339.(in Chinese)
    [27]于金革,牛中国,梁华,等.等离子体用于三角翼模型流动控制试验研究[J].空气动力学学报,2017,35(2):305-309.YU Jinge,NIU Zhongguo,LIANG Hua,et al.Experimental investigation on delta wing flow control by plasma[J].Acta Aerodynamica Sinica,2017,35(2):305-309.(in Chinese)
    [28]周思引,车学科,聂万胜.纳秒脉冲介质阻挡放电等离子体对超声速燃烧室中凹腔性能的影响[J].高电压技术,2014,40(10):3032-3037.ZHOU Siyin,CHE Xueke,NIE Wansheng.Influence of nanosecond pulse dielectric barrier discharge plasma on the cavity performance in scramjet combustor[J].High Voltage Engineering,2014,40(10):3032-3037.(in Chinese)
    [29]赵光银,李应红,梁华,等.纳秒脉冲表面介质阻挡等离子体激励唯象学仿真[J].物理学报,2015,64(1):015101.1-015101.11.ZHAO Guangyin,LI Yinghong,LIANG Hua,et al.Phenomenological modeling of nanosecond pulsed surface dielectric barrier discharge plasma actuation for flow control[J].Acta Physica Sinica,2015,64(1):015101.1-015101.11.(in Chinese)
    [30]李钢,聂超群,朱俊强,等.介质阻挡放电等离子体热效应对流场影响的研究[J].科技导报,2008,26(2):51-55.LI Gang,NIE Chaoqun,ZHU Junqiang,et al.Thermal effect of dielectric barrier discharge plasma on flow field[J].Science and Technology Review,2008,2008,26(2):51-55.(in Chinese)
    [31]化为卓,梁华,赵光银,等.温升效应对介质阻挡放电诱导速度和涡量的影响[J].高电压技术,2014,40(10):3038-3045.HUA Weizhuo,LIANG Hua,ZHAO Guangyin,et al.Effect of temperature rise on velocity and vorticity induced by dielectric barrier discharge[J].High Voltage Engineering,2014,40(10):3038-3045.(in Chinese)
    [32] ANSYS Inc.ANSYS FLUENT 14.0user's guide[R].Pittsburgh,PA:ANSYS Inc,2011.
    [33]刘杰,刘沛清,闫指江.中等后掠角三角翼前缘双涡结构的形成机理数值研究[J].空气动力学报,2012,30(6):767-771.LIU Jie,LIU Peiqing,YAN Zhijiang.Numerical investigations of formation mechanism about a dual leading-edge vortex structure of a delta wing with medium leading-edge sweep angle[J].Acta Aerodynamica Sinica,2012,30(6):767-771.(in Chinese)
    [34] GURSUL I,GORDNIER R,VISBAL M.Unsteady aerodynamics of nonslender delta wings[J].Progress in Aerospace Sciences,2005,41(7):515-557.
    [35] ZHAO Guangyin,LI Yinghong,LIANG Hua,et al.Control of vortex on a non-slender delta wing by a nanosecond pulse surface dielectric barrier discharge[J].Experiments in Fluids,2015,56(1):1864.1-1864.9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700