灌溉量对马铃薯生理特性及块茎产量品质的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influence of irrigation amount on potato physiologicalcharacteristics and tuber yield and quality
  • 作者:闫士朋 ; 焦润安 ; 张俊莲 ; 李健 ; 李朝周
  • 英文作者:YAN Shi-peng;JIAO Run-an;ZHANG Jun-lian;LI Jian;LI Chao-zhou;College of Life Science and Technology, Gansu Agricultural University;Gansu Key Laboratory of Crop Genetics & Germplasm Enhancement;College of Horticulture, Gansu Agricultural University;Gansu Tiaoshan Institute of Agricultural and Forestry Sciences;
  • 关键词:马铃薯 ; 灌溉量 ; 发育时期 ; 生理特性 ; 块茎产量 ; 块茎品质
  • 英文关键词:potato;;irrigation amount;;development stage;;physiological characteristics;;tuber yield;;tuber quality
  • 中文刊名:GHDQ
  • 英文刊名:Agricultural Research in the Arid Areas
  • 机构:甘肃农业大学生命科学技术学院;甘肃省作物遗传改良和种质创新重点实验室;甘肃农业大学园艺学院;甘肃条山农业科学研究所;
  • 出版日期:2019-05-10
  • 出版单位:干旱地区农业研究
  • 年:2019
  • 期:v.37;No.174
  • 基金:国家马铃薯产业技术体系(CARS-09-P14);; 甘肃省科技厅科技支撑项目(1604NKCAa052-3)
  • 语种:中文;
  • 页:GHDQ201903006
  • 页数:11
  • CN:03
  • ISSN:61-1088/S
  • 分类号:47-57
摘要
以"大西洋"马铃薯品种为试验材料,在甘肃省中部沿黄高扬程灌区的白银市景泰县条山农场马铃薯种植基地设置小区试验,在各发育阶段分别设置5个水分梯度(原灌溉量的50%、75%、100%、125%和150%,其中原灌溉量,即100%灌溉量,为当地常用的、维持试验地25.8%左右土壤含水率的灌溉量),探讨马铃薯各发育阶段灌溉量对其生理特性及块茎产量、品质的影响。结果表明,在马铃薯的各发育阶段,随着灌溉量的增加马铃薯叶片净光合速率(P_n)和蒸腾速率(T_r)分别先增加到最大值30.19μmol·m~(-2)·s~(-1)、12.50 mmol·m~(-2)·s~(-1),而后减小。当灌溉量为50%和150%时叶片P_n较100%灌溉量分别降低35.06%和19.59%。在不同发育阶段马铃薯叶片的生理活性对灌溉量表现出敏感响应。幼苗期75%灌溉量马铃薯叶片叶绿素含量、P_n和水分利用效率(WUE)分别为0.86 mg·g~(-1)、21.88μmol·m~(-2)·s~(-1)、2.29μmol·mmol~(-1),较100%灌溉量分别提高了14.15%、0.31%、3.80%,而MDA含量、SOD活性及CAT活性最低,较100%灌溉量分别降低了8.40%、11.69%、8.23%;发棵期100%灌溉量处理下P_n和WUE最高,较50%灌溉量处理分别提高了53.99%、24.85%,此时脯氨酸含量、可溶性糖含量、POD活性最低,分别为89.06μg·g~(-1)、143.45μmol·g~(-1)、438.14 U·g~(-1),同时超氧阴离子产生速率较50%灌溉量也降低了26.07%;结薯期125%灌溉量处理的P_n和WUE最高,较100%灌溉量分别提高了19.16%、6.76%,而SOD、POD活性较100%灌溉量分别降低了0.93%、6.23%;成熟期75%灌溉量马铃薯叶片P_n最高,较其余各灌溉量处理的P_n分别提高了38.64%、13.81%、14.16%、21.27%,而MDA含量、超氧阴离子产生速率分别为21.107μmol·g~(-1)、6.07 nmol·min~(-1)·g~(-1),较100%灌溉量分别降低了19.35%、2.26%。同一生育期低灌溉量(50%灌溉量)块茎中淀粉含量较低。在幼苗期75%灌溉量处理使得块茎的可溶性蛋白含量较100%灌溉量处理提高6.20%。发棵期100%灌溉量块茎中淀粉含量达到最高(15.14%),而结薯期125%灌溉量处理的块茎可溶性蛋白含量处于最高水平,较100%灌溉量下提高4.61%。成熟期75%灌溉量块茎淀粉含量处于最高水平,较100%灌溉量提高12.77%。结合块茎的总鲜重、商品薯率、淀粉含量、维生素C含量、可溶性蛋白含量、还原糖含量等指标,可知在幼苗期、发棵期、结薯期、成熟期灌溉量分别为原灌溉量的75%、100%、125%、75%时马铃薯块茎品质最优而且产量最高,分别为654.30、650.60、773.00、703.53 g·株~(-1)。
        A plot experiment was carried out in the potato planting base of Tiaoshan farm, Jingtai county, the high-lift irrigation area along the Yellow River in central Gansu Province. "Atlantic" variety of potato was used as the test material. Five different irrigation amount were set up at each potato development stage(50%, 75%, 100%, 125% and 150% of the original irrigation amount. The original irrigation amount(100%) is the irrigation amount commonly used locally to maintain the soil moisture content of 25.8% in the test site). The effects of different irrigation amount on physiological mechanism, potato tubers yield and quality at different developmental stages were studied. The results showed that with the increase of irrigation amount, the net photosynthetic rate(P_n) and transpiration rate(T_r) of potato leaves increased to the maximum value of 30.19 μmol·m~(-2)·s~(-1) and 12.50 mmol·m~(-2)·s~(-1), respectively, and then decreased. When the irrigation amount was 50% and 150%, the P_n of potato leaves decreased by 35.06% and 19.59%, respectively, compared with the 100% irrigation amount treatment. The activities of potato leaves at different developmental stages were sensitive to the irrigation amount.In seedling stage, when the irrigation amount was 75%, the chlorophyll content, P_n and WUE of potato leaves were 0.86 mg·g~(-1), 21.88 μmol·m~(-2)·s~(-1) and 2.29 μmol·mmol~(-1), and compared with 100% irrigation amount, it increased by 14.15%, 0.31% and 3.80%, respectively, while the MDA content, the activities of SOD and CAT were the lowest, compared with 100% irrigation amount, it decreased by 8.40%, 11.69% and 8.23%, respectively. In tillering stage, when the irrigation amount was 100%, P_n and WUE were the highest, compared with 50% irrigation amount, the improvement was 53.99% and 24.85%, respectively, while the proline content, soluble sugar content and POD activitiy were the lowest, were 89.06 μg·g~(-1), 143.45 μmol·g~(-1) and 438.14 U·g~(-1), respectively. Meanwhile, the superoxide anion generation rate also decreased by 26.07% compared with 50% irrigation amount.In tuber period, when the irrigation amount was 125%, the P_n and WUE were the highest, compared with 100% irrigation amount, it increased by 19.16%, 6.76%, respectively, and the activities of SOD and POD decreased by 0.93% and 6.23%, respectively. In maturity stage, when the irrigation amount was 75%, P_n was the highest,compared with the other irrigation amount, P_n of the potato leaves increased by 38.64%, 13.81%, 14.16% and 21.27%, respectively, while the MDA content and superoxide anion generation rate were 21.107 μmol·g~(-1) and 6.07 nmol·min~(-1)·g~(-1), respectively,compared with 100% irrigation, 19.35% and 2.26% were decreased respectively. The starch content in tubers with low irrigation amount(50%) was lower in the same growth stage. The soluble protein content of tubers treated with 75% irrigation amount at the seedling stage was significantly increased by 6.2% compared with the 100% irrigation amount treatment. The starch content in tubers with 100% irrigation amount was the highest(15.14%) at tillering stage, while the soluble protein content in tubers was at the highest level under 125% irrigation amount, 4.61% higher than the 100% irrigation amount treatment. At maturity stage, the starch content of tuber was at the highest level with 75% irrigation amount, which was significantly increased by 12.77% compared with that 100% irrigation amount treatment. In terms of the overall consideration of the total fresh weight, marketing tuber rate, starch content, vitamin C content, soluble protein content and reducing sugar content of tubers, 75%, 100%, 125% and 75% of the original irrigation amount showed the highest yield and best quality of the potato tubers under seedling stage, tillering stage, tuber period and maturity stage, respectively, which were 654.30, 650.60, 773.00, 703.53 g per plant.
引文
[1] Boutrif E.Institutions involved in food safety:food and agriculture organization of the United Nations (FAO) [J].Encyclopedia of Food Safety,2014,118(3077):354-358.
    [2] 葛一洪.马铃薯茎叶厌氧消化特性与工艺优化研究[D].咸阳:西北农林科技大学,2017.
    [3] 余斌,杨宏羽,王丽,等.引进马铃薯种质资源在干旱半干旱区的表型性状遗传多样性分析及综合评价[J].作物学报,2018,44(1):63.
    [4] Schapendonk A H C M,Spitters C J T,Groot P J.Effects of water stress on photosynthesis and chlorophyll fluorescence of five potato cultivars[J].Potato Research,1989,32(1):17-32.
    [5] 张红萍,李明达.水分胁迫后复水对豌豆叶片叶绿素含量的影响[J].干旱地区农业研究,2016,34(2):177-181.
    [6] 赵湘江,王妍,田昆.清香木叶片光合荧光特性对土壤水分胁迫的响应[J].干旱区资源与环境,2015,29(1):83-88.
    [7] 卢福顺.水分胁迫对马铃薯生理指标和叶片结构的影响[D].哈尔滨:东北农业大学,2013.
    [8] 朱俊岭,师茜,王小红,等.不同水分处理条件对油莎豆叶片生理指标及块茎品质的影响[J].西南农业学报,2016,29(6):1276-1280.
    [9] 颜淑云,周志宇,邹丽娜,等.干旱胁迫对紫穗槐幼苗生理生化特性的影响[J].干旱区研究,2011,28(1):139-145.
    [10] 高桐梅,吴寅,李丰,等.苗期水分胁迫对芝麻生长和生理特性的影响[J].核农学报,2017,31(11):2229-2235.
    [11] 邹琦.植物生理生化实验指导[M].北京:中国农业出版社,1995:110-161.
    [12] 张志良.植物生理学实验指导[M].北京:高等教育出版社,2009:223.
    [13] Guo F X,Zhang M X,Chen Y,et al.Relation of several antioxidant enzymes to rapid freezing resistance in suspension cultured cells from alpine Chorisporabungeana [J].Cryobiology,2006,52(2):241-250.
    [14] Giannopolitis C N,Ries S K.Superoxide dismutases:I.Occurrence in higher plants[J].Plant Physiology,1977,59(2):309.
    [15] Shi J,Fu X Z,Peng T,et al.Spermine pretreatment confers dehydration tolerance of citrus in vitro plants via modulation of antioxidative capacity and stomatal response [J].Tree Physiology,2010,30(7):914.
    [16] Abassi N A,Kushad M M,Endress A G.Active oxygen-scavenging enzymes activities in developing apple flowers and fruits [J].Scientia Horticulturae,1998,3(74):183-184.
    [17] 郝再彬.植物生理实验[M].哈尔滨:哈尔滨工业大学出版社,2006:71-78.
    [18] 王学奎.植物生理生化实验原理和技术.第2版.[M].北京:高等教育出版社,2006:172-173.
    [19] 张永成,田丰.马铃薯试验研究方法[M].北京:中国农业科学技术出版社,2007:171.
    [20] 王秋玲,周广胜,麻雪艳.夏玉米叶片含水率及光合特性对不同强度持续干旱的响应[J].生态学杂志,2015,34(11):3111-3117.
    [21] Acreche M M,Briceňo-Félix G,Sánchez J A M,et al.Radiation interception and use efficiency as affected by breeding in Mediterranean wheat [J].Field Crops Research,2009,110(2):91-97.
    [22] Fotovat R,Valizadeh M,Toorchi M.Association between water-use efficiency components and total chlorophyll content (SPAD) in wheat (Triticum aestivum L.) under well-watered and drought stress conditions [J].Journal of Food Agriculture & Environment,2007,5(3):225-227.
    [23] 于美芳,王新鹏,段云轩,等.分蘖期干旱胁迫对寒地粳稻光合特性及产量形成的影响[J].核农学报,2017,31(9):1794-1802.
    [24] 周玉乾,寇思荣,连晓荣.甘肃敦煌绿洲区干旱胁迫下玉米抗旱性与灌浆期光合特性[J].干旱地区农业研究,2016,34(4):112-117.
    [25] 田琳,谢晓金,包云轩,等.不同生育期水分胁迫对夏玉米叶片光合生理特性的影响[J].中国农业气象,2013,34(6):655-660.
    [26] 张雨新,张富仓,邹海洋,等.生育期水分调控对河西地区滴灌春小麦生长和水分利用的影响[J].干旱地区农业研究,2017,35(1):171-177.
    [27] Talebi R.Evaluation of chlorophyll content and canopy temperature as indicators for drought tolerance in durum wheat (Triticum durum Desf.)[J].Australian Journal of Basic & Applied Sciences,2011,5(11):1457-1462.
    [28] Zhang F J,Zhang K K,Du C Z,et al.Effect of drought stress on anatomical structure and chloroplast altrastructure in leaves of sugarcane[J].Sugar Tech,2015,17(1):41-48.
    [29] 王齐,孙吉雄,安渊.水分胁迫对结缕草种群特征和生理特性的影响[J].草业学报,2009,18(2):33-38.
    [30] 邱真静,李毅,种培芳.PEG胁迫对不同地理种源沙拐枣生理特性的影响[J].草业学报,2011,20(3):108-114.
    [31] 赵晖,李尚中.水分胁迫对全膜双垄沟播玉米光合等生理特性的影响[J].干旱地区农业研究,2015,33(5):85-89.
    [32] 崔毅,陈思,柴瑞育,等.番茄产量对各生育阶段土壤水分的响应分析[J].干旱地区农业研究,2015,33(6):14-21.
    [33] 抗艳红,赵海超,龚学臣,等.不同生育期干旱胁迫对马铃薯产量及品质的影响[J].安徽农业科学,2010,38(30):16820-16822.
    [34] 吴晓伟.生育初期不同土壤水分对免耕稻草覆盖马铃薯产量及品质的影响[D].南宁:广西大学,2007.
    [35] 郭海涛,邹志荣,杨兴娟,等.调亏灌溉对番茄生理指标、产量品质及水分生产效率的影响[J].干旱地区农业研究,2007,25(3):133-137.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700