几种生物滞留植物对雨水中营养物的吸收动力学特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:ABSORPTION KINETICS OF NUTRIENT IN STORMWATER BY SEVERAL BIORETENTION PLANTS
  • 作者:陈韬 ; 张本 ; 李剑沣 ; 韩朦紫
  • 英文作者:CHEN Tao;ZHANG Ben;LI Jian-feng;HAN Meng-zi;Key Laboratory of Urban Stormwater System and Water Environment, Minisity of Education, Beijing University of Civil Engineering and Architecture;
  • 关键词:生物滞留植物 ; 吸收动力学 ; 铵氮 ; 硝酸盐氮 ; 有机氮
  • 英文关键词:bioretention plant;;absorption kinetics;;ammonium nitrogen;;nitrate nitrogen;;organic nitrogen
  • 中文刊名:HJGC
  • 英文刊名:Environmental Engineering
  • 机构:北京建筑大学城市雨水系统与水环境教育部重点实验室;
  • 出版日期:2018-09-22
  • 出版单位:环境工程
  • 年:2018
  • 期:v.36;No.243
  • 基金:国家自然科学基金(51408021)
  • 语种:中文;
  • 页:HJGC201809005
  • 页数:5
  • CN:09
  • ISSN:11-2097/X
  • 分类号:26-30
摘要
通过营养物耗竭法研究了丹麦草、萱草、狼尾草3种生物滞留植物对NH~+_4-N、NO~-_3-N、Glycine-N、TSP的吸收动力学特征。结果表明:3种植物对于无机氮的吸收效果更好,并且对NH~+_4-N的吸收效果优于NO~-_3-N。当雨水中NH~+_4-N、TSP含量较高时,生物滞留系统植物宜选用萱草;当NO~-_3-N含量较高时,宜选用丹麦草;当Glycine-N含量较高时,宜选用狼尾草。因此,当雨水中各种污染物含量较低时,生物滞留系统可选用狼尾草;在干旱地区,则宜选用萱草。
        The absorption kinetics of ammonium nitrogen, nitrate nitrogen, organic nitrogen and total soluble phosphorus in bioretention plants(Liriope graminifolia, Hemerocallis fulva and Pennisetum alopecuroides) were studied by using nutrient depletion method.The results showed that all three plants showed better absorption of inorganic nitrogen, and the absorption effect of ammonia was better than that of nitrate. In the high concentration treatment group, Hemerocallis fulva exterminated the ammonium nitrogen and total soluble phosphorus with the highest performance. Liriope graminifolia was suitable for the treatment of high concentration nitrate, while Pennisetum alopecuroides had the strongest ability for the removal of organic nitrogen. In the low concentration treatment group, Pennisetum alopecuroides had better effect on nutrient removal than the other two plants. Consequently, Pennisetum alopecuroides was recommended to be used in bioretention for rich stormwater with relative low nutrient, while Hemerocallis fulva was more suitable to treat stormwater with relative high nutrient in arid zone.
引文
[1] Li C, Zheng X, Zhao F, et al. Effects of urban non-point source pollution from Baoding City on Baiyangdian Lake, China[J]. Water, 2017, 9(4): 249-267.
    [2] 仇付国, 代一帆, 付昆明, 等. 生物滞留系统设置内部淹没区对径流污染物去除的影响[J]. 环境工程, 2017, 35(7): 7-12.
    [3] 许萍, 黄俊杰, 张建强, 等. 模拟生物滞留池强化径流雨水中的氮磷去除研究[J]. 环境科学与技术, 2017(2): 107-112.
    [4] 颜子钦, 李立青, 刘雨情, 等. 设置饱和带对生物滞留去除地表径流中N、P的影响[J]. 中国给水排水, 2017(11): 33-38.
    [5] Payne E G I, Fletcher T D, Russell D G, et al. Temporary storage or permanent removal? The division of nitrogen between biotic assimilation and denitrification in stormwater biofiltration systems[J]. Plos One, 2014, 9(3): e90890.
    [6] 陈垚, 杨威, 王健斌, 等. 雨水生物滞留设施中植被的设计与养护[J]. 中国给水排水, 2017(12): 6-11.
    [7] 谢静, 吕锡武, 李洁. 6种湿地植物吸收污水中氮和磷的动力学[J]. 环境工程学报, 2016, 10(8): 4067-4072.
    [8] Christiansen N H, Andersen F, Jensen H S. Phosphate uptake kinetics for four species of submerged freshwater macrophytes measured by a 33 P phosphate radioisotope technique[J]. Aquatic Botany, 2016, 128: 58-67.
    [9] Zhou X, Wang G, Yang F. Characteristics of growth, nutrient uptake, purification effect of Ipomoea aquatica, Lolium multiflorum, and Sorghum sudanense grown under different nitrogen levels[J]. Desalination, 2011, 273(2/3): 366-374.
    [10] Taylor G D, Fletcher T D, Wong T H, et al. Nitrogen composition in urban runoff implications for stormwater management[J]. Water Res, 2005, 39(10): 1982-1989.
    [11] Liu J, Davis A P. Phosphorus speciation and treatment using enhanced phosphorus removal bioretention[J]. Environmental Science & Technology, 2014, 48(1): 607-614.
    [12] Warren C R. Organic N molecules in the soil solution: what is known, what is unknown and the path forwards[J]. Plant & Soil, 2014, 375(1/2): 1-19.
    [13] Vermeer C P, Escher M, Portielje R, et al. Nitrogen uptake and translocation by Chara[J]. Aquatic Botany, 2003, 76(3): 245-258.
    [14] Chapin F S, Moilanen L, Kielland K. Preferential use of organic nitrogen for growth by a non-mycorrhizal arctic sedge[J]. Nature, 1993, 361: 150-153.
    [15] Miller A J, Fan X, Orsel M, et al. Nitrate transport and signalling[J]. Journal of Experimental Botany, 2007, 58(9): 2297-2306.
    [16] Brix H, Dyhrjensen K, Lorenzen B. Root-zone acidity and nitrogen source affects Typha latifolia L. growth and uptake kinetics of ammonium and nitrate[J]. Journal of Experimental Botany, 2002, 53(379): 2441-2450.
    [17] Lipson D A, Schmidt S K, Monson R K. Links between microbial population dynamics and ditrogen availability in and alpine ecosystem[J]. Ecology, 1999, 80(5): 1623-1631.
    [18] Jones D L, Darrah P R. Amino-acid influx at the soil-root interface of Zea mays L. and its implications in the rhizosphere[J]. Plant & Soil, 1994, 163(1): 1-12.
    [19] Reinhold A, Kaplan A. Membrane transport of sugars and amino acids[J]. Annual Review of Plant Biology, 1984, 35(35): 45-83.
    [20] Okamoto M, Okada K. Differential responses of growth and nitrogen uptake to organic nitrogen in four gramineous crops[J]. J Exp Bot, 2004, 55(402): 1577-1585.第一作者

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700