pH值对低酯果胶/酪蛋白酸钠复合体系流变及结构特性的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of pH Value on Rheological and Structural Properties of Low Methoxyl Pectin/Sodium Caseinate Composite System
  • 作者:彭媛媛 ; 王昱圭 ; 汤雪纤 ; 赵欣 ; 张甫生 ; 郑炯
  • 英文作者:PENG Yuanyuan;WANG Yugui;TANG Xueqian;ZHAO Xin;ZHANG Fusheng;ZHENG Jiong;College of Food Science, Southwest University;National Demonstration Center for Experimental Food Science and Engineering Education (Southwest University);Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education;
  • 关键词:低酯果胶 ; 酪蛋白酸钠 ; pH值 ; 流变特性 ; 微观结构
  • 英文关键词:low methoxyl pectin;;sodium caseinate;;pH;;rheological properties;;microstructure
  • 中文刊名:SPKX
  • 英文刊名:Food Science
  • 机构:西南大学食品科学学院;食品科学与工程国家级实验教学示范中心(西南大学);重庆第二师范学院重庆市功能性食品协同创新中心;
  • 出版日期:2018-07-17 16:28
  • 出版单位:食品科学
  • 年:2019
  • 期:v.40;No.595
  • 基金:中央高校基本科研业务费专项(SWU20161702001);; 重庆市功能性食品协同创新中心项目(167001);; 国家级大学生创新创业训练计划项目(201710635036)
  • 语种:中文;
  • 页:SPKX201906006
  • 页数:6
  • CN:06
  • ISSN:11-2206/TS
  • 分类号:43-48
摘要
为研究pH值对低酯果胶/酪蛋白酸钠复合体系流变及结构特性的影响,分别在不同酸性条件下(pH 3.0、3.5、4.0、4.5、5.0、5.5)对复合体系的静态剪切及动态黏弹流变特性、Zeta电位、粒径、浊度、微观结构进行测定。结果表明:复合体系流变特性呈两段式变化,在pH 3.0~4.0时,随pH值的增大,复合体系流体指数n和tanδ均增大,稠度系数K减少;在pH 4.5~5.5时,体系n和tanδ骤减后继续增加,且增加程度更大,K骤增后继续减少。复合体系Zeta电位值随着pH值的增大而降低。Zeta电位值在pH 3.0~4.0时为正,在pH 4.5~5.5时为负。复合体系粒径和浊度值均随着pH值的增大呈先增大后减小的趋势,在pH 4.5时达到最大。随着pH值的降低,复合体系微观结构由杂乱变得细密。在pH 3.0~4.0时,体系以低酯果胶附着在酪蛋白表面结构为主;在pH 4.5~5.5时,体系中低酯果胶的网状结构更明显。因此,pH值的变化会改变复合体系的流变及结构特性,从而影响体系的稳定性。
        We studied the effect of pH on the rheological and structural properties of low methoxyl pectin/sodium caseinate composite system. At different acidic pH values(3.0, 3.5, 4.0, 4.5, 5.0, 5.5), static shear and dynamic viscoelastic rheological properties, zeta potential, particle size, turbidity, and microstructure were measured. The results showed that the rheological properties of the composite system changed in two stages. Fluid index n and tanδ increased whereas consistency coef?cient K decreased with the increase of pH from 3.0 to 4.0. As the pH increased from 4.5 to 5.5, n and tanδ decreased rapidly and then increased to a level higher than the initial one while K increased steeply and then decreased. Zeta potential decreased with increasing pH; it was positive at pH 3.0 to 4.0 but was negative at pH 4.5 to 5.5. Particle size and turbidity increased to a maximum at pH 4.5 and then decreased with the increase of pH. As the pH value decreased, the microstructure of the composite system changed from a disordered state into a dense one. At pH 3.0–4.0, the structure of the casein surface was dominated by low methoxyl pectin, and the network structure of low methoxyl pectin was more obvious at pH 4.5–5.5.Therefore, changes in pH can cause changes in the rheological and structural properties of the composite system, thereby affect the stability of the system.
引文
[1]许威,李斌.多糖/蛋白质复合体系相转变及其在食品中的应用[J].食品科技, 2017, 42(1):76-81. DOI:10.13684/j.cnki.spkj.2017.01.018.
    [2]TOLSTOGUZOV V. Functional properties of food proteins and role ofprotein-polysaccharideinteraction[J].FoodHydrocolloids,1991,4(6):429-468. DOI:10.1016/S0268-005X(09)80196-3.
    [3]HAUG I J, DRAGET K I, SMIDSROD O. Physical behavior of?sh gelatin-κ-carrageenanmixtures[J].CarbohydratePolymers,2004,56(1):11-19. DOI:10.1016/j.carbpol.2003.10.014.
    [4]MIQUELIMJN,LANNESSC,MEZZENGAR.pHInfluenceon the stability of foams with protein-polysaccharide complexes at their interfaces[J]. Food Hydrocolloids, 2010, 24(4):398-405. DOI:10.1016/j.foodhyd.2009.11.006.
    [5]CHAMPAGNECP,FUSTIERP.Microencapsulation for the improved delivery of bioactive compoundsint of oods[J].Current OpinioninBiotechnology,2007,18(2):184-190.DOI:10.1016/j.copbio.2007.03.001.
    [6]GOUINS.Microencapsulation:industrial appraisal of existing technologies and trends[J].Trendsin Food Science&Technology,2004, 15(7):330-347. DOI:10.1016/j.tifs.2003.10.005.
    [7]王芳,张昊,郭慧媛,等.酪蛋白与多糖相互作用研究及其在食品中的应用[J].中国乳业,2012(8):52-56.DOI:10.3969/j.issn.1671-4393.2012.08.014.
    [8]YUANY,WANZL,YANGXQ,etal.Associativeinteractions between chitosan and soy protein fractions:effects of pH, mixing ratio,heattreatmentandionicstrength[J].FoodResearchInternational,2014, 55:207-214. DOI:10.1016/j.foodres.2013.11.016.
    [9]牛付阁.卵白蛋白:阿拉伯胶相互作用及其在油水界面的吸附特性[D].无锡:江南大学, 2015.
    [10]LEXT,TURGEONSL.Rheological ands tructural studyof elect rostatic cross-linked xanthan gum hydrogels induced by betalacto globulin[J]. Soft Matter, 2013, 11(9):3063-3073. DOI:10.1039/c3sm27528k.
    [11]李成倍.高酰基结冷胶/酪蛋白酸钠凝胶特性研究[D].杭州:浙江工商大学, 2014.
    [12]赵正涛,王秀菊. NaCl对酪蛋白酸钠溶液流变学特性及结构变化的影响[J].乳业科学与技术, 2013, 36(5):11-15. DOI:10.15922/j.cnki.jdst.2013.05.005.
    [13]孙勤,王丽娟.酪蛋白酸钠稳定的海藻油纳米乳液制备及表征[J].现代食品科技,2 0 1 6,3 2(6):1 8 3-1 8 7.D O I:1 0. 1 3 9 8 2/j.mfst.1673-9078.2016.6.029.
    [14]李伟伟.高乳化性大豆蛋白的制备及其界面流变性质的研究[D].无锡:江南大学, 2017.
    [15]盖武军.水解桃胶与酪蛋白酸钠相互作用及流变特性的研究[D].杭州:浙江工商大学, 2015.
    [16]HYUNNHO C, HANA J, HEEJEA L, et al. Formation of electrostatic complexes using sodium caseinate with high-methoxyl pectin and carboxy methylcellu lose and their application in stabilisation of curcumin[J].International Journal of Foodscience of Technology,2016, 51(7):1655-1665. DOI:10.1111/ijfs.13137.
    [17]KLEMMER K, WALDER L, STONE A, et al. Complex coacervation of pea protein isolate and alginate polysaccharides[J]. Food Chemistry,2012, 130(3):710-715. DOI:10.1016/j.foodchem.2011.07.114.
    [18]房德,许磊,张春蓬.酰胺化低酯果胶在低糖果酱的应用研究[J].农产品加工:学刊, 2013(10):16-18. DOI:10.3969/jissn.1671-9646(X).2013.10.034.
    [19]SABOURIS,CORREDIGM.Acidinduceddestabilizationof emulsions prepared with sodium caseinate-epigallocatechin-gallate complexes[J]. Food Hydrocolloids, 2016, 61:113-118. DOI:10.1016/j.foodhyd.2016.04.039.
    [20]EGHBALN,YARMANDMS,MOUSAVIM,etal.Complex coacervation for the development of composite edible?lms based on LMpectin and sodium case inate[J].Carbohydrate Polymers,2016,151:947-956. DOI:10.1016/j.carbpol.2016.06.052.
    [21]邱蓉. CMC和大豆多糖对酸性乳饮料中酪蛋白稳定机理的研究[D].杭州:浙江工商大学, 2010.
    [22]刘丽娅.酪蛋白酸钠-多糖界面相互作用及其对乳状液稳定性的影响[D].广州:华南理工大学, 2011.
    [23]LAURA A, RESENDIZ F, RIOS E, et al. Pectins from waste of prickly pear fruits(Opuntia albicarpa Scheinvar ‘Reyna’):chemical and rheological properties[J]. Food Hydrocolloids, 2014, 37:93-99.DOI:10.1016/j.foodhyd.2013.10.018.
    [24]代曜伊,刘敏,郑炯.竹笋不溶性膳食纤维对草莓果酱流变及质构特性的影响[J].食品与发酵工业, 2017, 43(3):83-88. DOI:10.13995/j.cnki.11-1802/ts.201703015.
    [25]NASCIMENTOGE,SIMAS-TOSINFF,IACOMINIM,etal.Rheologicalbehaviorofhighmethoxylpectinfromthepulpof tamarillo fruit(Solanum betaceum)[J]. Carbohydrate Polymers, 2016,139:125-130. DOI:10.1016/j.carbpol.2015.11.067.
    [26]支梓鉴,邹明明,李珊,等.柑橘果肉果胶的流变和结构特性[J].高等学校化学学报, 2016, 37(6):1175-1181. DOI:10.7503/cjcu20160066.
    [27]OHHE,ANEMASG,WONGM,etal.Effectofpotatostarch addition on the acid gelation of milk[J]. International Dairy Journal,2007, 17(7):808-815. DOI:10.1016/j.idairyj.2006.09.013.
    [28]DICKINSONE.Mixed Biopoly mersatinter faces competitive adsorption and multilayer structures[J].Food Hydrocolloids,2011,25(8):1966-1983. DOI:10.1016/j.foodhyd.2010.12.001.
    [29]LANGENDORFFV,CUVELIERG,MICHONC,etal.Effects of carrageenan type on the behaviour of carrageenan/milk mixtures[J]. Food Hydrocolloids, 2000, 14(4):273-280. DOI:10.1016/S0268-005X(99)00064-8.
    [30]赵正涛,李全阳,卫晓英,等.黄原胶对酸乳凝胶特性的影响及其作用机理探讨[J].食品工业科技, 2009, 30(5):154-157. DOI:10.13386/j.issn1002-0306.2009.05.032.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700