铁稳态代谢分子机制及铁磁纳米颗粒研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Advances in iron homeostasis and ferromagnetic nanoparticles
  • 作者:王佳明 ; 安鹏 ; 王浩 ; 吴谦 ; 方学贤 ; 闵军霞 ; 王福俤
  • 英文作者:Jiaming Wang;Peng An;Hao Wang;Qian Wu;Xuexian Fang;Junxia Min;Fudi Wang;School of Public Health, Zhejiang University School of Medicine;Institute of Translational Medicine, Zhejiang University;Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University;
  • 关键词:铁稳态 ; 缺铁性贫血 ; 铁过载 ; 血色病 ; 铁调素 ; 铁磁纳米颗粒
  • 英文关键词:iron homeostasis;;iron-deficient anemia;;iron overload;;hemochromatosis;;hepcidin;;ferromagnetic nanoparticles
  • 中文刊名:KXTB
  • 英文刊名:Chinese Science Bulletin
  • 机构:浙江大学医学院公共卫生学院;浙江大学转化医学研究院;中国农业大学北京食品营养与人类健康高精尖创新中心;
  • 出版日期:2018-11-26 08:43
  • 出版单位:科学通报
  • 年:2019
  • 期:v.64
  • 基金:国家重点研发计划重点专项(2018YFA0507801,2018YFA0507802);; 国家自然科学基金(31530034,3133036,31570791,91542205)资助
  • 语种:中文;
  • 页:KXTB201908006
  • 页数:14
  • CN:08
  • ISSN:11-1784/N
  • 分类号:54-67
摘要
铁是人体必需微量元素,参与血红蛋白及多种酶的合成,在氧气运输、免疫调节、核酸合成及基因表达调控等多种生理过程中发挥重要作用.铁稳态代谢的维持对于机体正常生长发育至关重要,铁稳态代谢失衡会引发多种疾病.机体铁稳态代谢的调控由多个环节协调控制;在分子水平上,铁调素Hepcidin作为铁稳态代谢的关键调控因子,通过降解小肠上皮细胞和巨噬细胞上的铁外排蛋白Ferroportin,调控机体铁稳态.由此可见,机体内铁稳态代谢的维持是由多因素、多层次的复杂调控网络协调完成.铁不仅是必需的营养物质,还是新型生物材料的重要组分.铁磁纳米颗粒是一类以铁蛋白或Fe_3O_4等作为基础的生物大分子纳米粒子,因其较强的磁导向性和较好的生物兼容性,已被广泛应用于生物医学领域.本文围绕我们团队近年在铁稳态代谢领域的系列原创发现,就铁调素调控铁代谢稳态的分子网络及铁磁纳米颗粒研究国际前沿进展进行系统综述.
        The essential trace element iron is a major structural component required for the synthesis and function of hemoglobin and various enzymes, and is therefore involved in many key physiological processes, including oxygen transport, nucleic acid synthesis, gene expression, and immune regulation. Iron homeostasis is therefore essential to maintaining health. For example, iron deficiency leads to anemia, whereas iron overload can lead to the formation of free radicals, which cause lipid peroxidation, DNA damage, and changes in other bioactive molecules. Thus, iron overload has been implicated in a wide range of diseases, including hemochromatosis, diabetes, cardiovascular disease, neurodegeneration, and cancer. Systemically, iron homeostasis is tightly regulated by several processes, including iron absorption in the intestine, iron circulation in the blood, iron utilization in various tissues, iron storage in the liver, and iron recycling in splenic red pulp macrophages. In recent years, new genetic animal models and cutting-edge technologies have led to considerable progress regarding the molecular mechanisms that underlie iron metabolism. Ferroptosis, a recently identified iron-dependent form of cell death, has been implicated in several disease conditions, including acute kidney failure following ischemia/reperfusion, Huntington's disease, cancer, and neurodegeneration. Although no definitive biomarkers have been identified, lipid peroxidation, PTGS2 expression, and NADPH levels have been suggested as possible biomarkers of ferroptosis. Nevertheless, the regulatory mechanisms underlying ferroptosis are fairly complex and poorly understood. Recently, our understanding of the pathways that regulate hepcidin, the master regulator of iron homeostasis, has increased considerably. Hepcidin regulates systemic iron levels by facilitating degradation of the sole iron exporter, Ferroportin, thereby controlling the absorption, utilization, and storage of iron. Hepcidin also cooperatively regulates iron homeostasis in response to various stimuli; specifically, iron overload and inflammation upregulate hepcidin expression, whereas erythropoiesis and hypoxic stress downregulate hepcidin expression. In addition, several epigenetic processes regulate hepcidin expression, thereby regulating iron metabolism. New studies are continually revealing novel molecular mechanisms related to the complex networks that regulate hepcidin, providing exciting new possibilities for treating iron-related diseases. Iron-containing biological materials have also been studied for their clinical potential. For example, ferromagnetic nanoparticles, which are ferritin-or Fe3 O4-containing biomacromolecules, have been applied in a wide variety of biomedical fields due to their superior magnetic properties and biocompatibility, making them ideal drug carriers. Importantly, nanoparticles readily penetrate the blood-brain barrier and enter the central nervous system, improving the bioavailability and therapeutic efficacy of drugs. Alternatively, an external magnetic field can be used to direct ferromagnetic nanoparticles to specific lesions. For example, a drug-containing transferrin nanoparticle complex could be used to targets specific tumor cells due to their increased expression of the transferrin receptor compared to healthy tissue. Superparamagnetic iron oxide nanoparticles may also be a promising tool for destroying cancer cells using a rapidly alternating external magnetic field. Thanks to their wide range of properties and features, ferromagnetic nanoparticles offer a wealth of promising biomedical applications. Here, we review the molecular mechanisms that regulate iron homeostasis, focusing on groundbreaking discoveries in hepcidin regulation and recent progress regarding biomedical applications for ferromagnetic nanoparticles.
引文
1 Heising S,Richter L,Ludwig W,et al.Chlorobium ferrooxidans sp.nov.,a phototrophic green sulfur bacterium that oxidizes ferrous iron in coculture with a“Geospirillum”sp.strain.Arch Microbiol,1999,172:116-124
    2 Meynard D,Babitt J L,Lin H Y.The liver:Conductor of systemic iron balance.Blood,2014,123:168-176
    3 Hentze M W,Muckenthaler M U,Galy B,et al.Two to tango:Regulation of mammalian iron metabolism.Cell,2010,142:24-38
    4 Camaschella C.Iron-deficiency anemia.N Engl J Med,2015,372:1832-1843
    5 Killip S,Bennett J M,Chambers M D.Iron deficiency anemia.Am Fam Phys,2007,75:671-678
    6 Kassebaum N J,Jasrasaria R,Naghavi M,et al.A systematic analysis of global anemia burden from 1990 to 2010.Blood,2014,123:615-624
    7 An P,Wu Q,Wang H,et al.TMPRSS6,but not Tf,TfR2 or BMP2 variants are associated with increased risk of iron-deficiency anemia.Hum Mol Genet,2012,21:2124-2131
    8 Pietrangelo A.Hereditary hemochromatosis-A new look at an old disease.N Engl J Med,2004,350:2383-2397
    9 Simon M,Le Mignon L,Fauchet R,et al.A study of 609 HLA haplotypes marking for the hemochromatosis gene:(1)mapping of the gene near the HLA-A locus and characters required to define a heterozygous population and(2)hypothesis concerning the underlying cause of hemochromatosis-HLA association.Am J Hum Genet,1987,41:89-105
    10 Feder J N,Gnirke A,Thomas W,et al.A novel MHC class I-like gene is mutated in patients with hereditary haemochromatosis.Nat Genet,1996,13:399-408
    11 Roetto A,Papanikolaou G,Politou M,et al.Mutant antimicrobial peptide hepcidin is associated with severe juvenile hemochromatosis.Nat Genet,2003,33:21-22
    12 Camaschella C,Roetto A,Cali A,et al.The gene TFR2 is mutated in a new type of haemochromatosis mapping to 7q22.Nat Genet,2000,25:14-15
    13 Montosi G,Donovan A,Totaro A,et al.Autosomal-dominant hemochromatosis is associated with a mutation in the ferroportin(SLC11A3)gene.J Clin Invest,2001,108:619-623
    14 Njajou O T,Vaessen N,Joosse M,et al.A mutation in SLC11A3 is associated with autosomal dominant hemochromatosis.Nat Genet,2001,28:213-214
    15 Mayr R,Janecke A R,Schranz M,et al.Ferroportin disease:A systematic meta-analysis of clinical and molecular findings.J Hepatol,2010,53:941-949
    16 An P,Jiang L,Guan Y,et al.Identification of hereditary hemochromatosis pedigrees and a novel SLC40A1 mutation in Chinese population.Blood Cells Mol Dis,2017,63:34-36
    17 Wang F,Paradkar P N,Custodio A O,et al.Genetic variation in Mon1a affects protein trafficking and modifies macrophage iron loading in mice.Nat Genet,2007,39:1025-1032
    18 Pelucchi S,Mariani R,Calza S,et al.CYBRD1 as a modifier gene that modulates iron phenotype in Hfe p.C282Y homozygous patients.Haematologica,2012,97:1818-1825
    19 McLaren C E,Emond M J,Subramaniam V N,et al.Exome sequencing in Hfe C282Y homozygous men with extreme phenotypes identifies a GNPAT variant associated with severe iron overload.Hepatology,2015,62:429-439
    20 Dixon S J,Lemberg K M,Lamprecht M R,et al.Ferroptosis:An iron-dependent form of nonapoptotic cell death.Cell,2012,149:1060-1072
    21 Yang W S,Stockwell B R.Ferroptosis:Death by lipid peroxidation.Trends Cell Biol,2016,26:165-176
    22 Wang H,An P,Xie E,et al.Characterization of ferroptosis in murine models of hemochromatosis.Hepatology,2017,66:449-465
    23 Maiorino M,Conrad M,Ursini F.GPx4,Lipid peroxidation,and cell death:Discoveries,rediscoveries,and open issues.Antioxid Redox Sign,2018,29:61-74
    24 Jiang L,Kon N,Li T,et al.Ferroptosis as a p53-mediated activity during tumour suppression.Nature,2015,520:57-62
    25 Hayano M,Yang W S,Corn C K,et al.Loss of cysteinyl-tRNA synthetase(CARS)induces the transsulfuration pathway and inhibits ferroptosis induced by cystine deprivation.Cell Death Diff,2016,23:270-278
    26 Doll S,Proneth B,Tyurina Y Y,et al.ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition.Nat Chem Biol,2017,13:91-98
    27 Mancias J D,Wang X,Gygi S P,et al.Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy.Nature,2014,509:105-109
    28 Gao M,Monian P,Quadri N,et al.Glutaminolysis and transferrin regulate ferroptosis.Mol Cell,2015,59:298-308
    29 Moroishi T,Nishiyama M,Takeda Y,et al.The FBXL5-IRP2 axis is integral to control of iron metabolism in vivo.Cell Metab,2011,14:339-351
    30 Yuan H,Li X,Zhang X,et al.Identification of ACSL4 as a biomarker and contributor of ferroptosis.Biochem Biophys Res Commun,2016,478:1338-1343
    31 Yang W S,SriRamaratnam R,Welsch M E,et al.Regulation of ferroptotic cancer cell death by GPX4.Cell,2014,156:317-331
    32 Shimada K,Hayano M,Pagano N C,et al.Cell-line selectivity improves the predictive power of pharmacogenomic analyses and helps identify NADPH as biomarker for ferroptosis sensitivity.Cell Chem Biol,2016,23:225-235
    33 Shen J,Sheng X,Chang Z,et al.Iron metabolism regulates p53 signaling through direct heme-p53 interaction and modulation of p53 localization,stability,and function.Cell Rep,2014,7:180-193
    34 Fang X,An P,Wang H,et al.Dietary intake of heme iron and risk of cardiovascular disease:A dose-response meta-analysis of prospective cohort studies.Nutr Metab Cardiovasc Dis,2015,25:24-35
    35 Zhao L,Zhang X,Shen Y,et al.Obesity and iron deficiency:A quantitative meta-analysis.Obes Rev,2015,16:1081-1093
    36 Folgueras A R,Freitas-Rodriguez S,Ramsay A J,et al.Matriptase-2 deficiency protects from obesity by modulating iron homeostasis.Nat Commun,2018,9:1350
    37 Gan W,Guan Y,Wu Q,et al.Association of TMPRSS6 polymorphisms with ferritin,hemoglobin,and type 2 diabetes risk in a Chinese Han population.Am J Clin Nutr,2012,95:626-632
    38 Guo X,Zhou D,An P,et al.Associations between serum hepcidin,ferritin and Hb concentrations and type 2 diabetes risks in a Han Chinese population.Br J Nutr,2013,110:2180-2185
    39 Wang X,Fang X,Wang F.Pleiotropic actions of iron balance in diabetes mellitus.Rev Endocr Metab Disord,2015,16:15-23
    40 Tao Y,Wang Y,Rogers J T,et al.Perturbed iron distribution in Alzheimer’s disease serum,cerebrospinal fluid,and selected brain regions:A systematic review and meta-analysis.J Alzheimers Dis,2014,42:679-690
    41 Zhang Z,Zhang F,An P,et al.Ferroportin1 deficiency in mouse macrophages impairs iron homeostasis and inflammatory responses.Blood,2011,118:1912-1922
    42 Zhang F,Tao Y,Zhang Z,et al.Metalloreductase Steap3 coordinates the regulation of iron homeostasis and inflammatory responses.Haematologica,2012,97:1826-1835
    43 Zhang Z,Zhang F,Guo X,et al.Ferroportin1 in hepatocytes and macrophages is required for the efficient mobilization of body iron stores in mice.Hepatology,2012,56:961-971
    44 Lim J E,Jin O,Bennett C,et al.A mutation in Sec15l1 causes anemia in hemoglobin deficit(HBD)mice.Nat Genet,2005,37:1270-1273
    45 Dong X P,Cheng X,Mills E,et al.The type IV mucolipidosis-associated protein TRPML1 is an endolysosomal iron release channel.Nature,2008,455:992-996
    46 Wang X,Zheng X,Zhang J,et al.Physiological functions of Ferroportin in the regulation of renal iron recycling and ischemic acute kidney injury.Am J Physiol Renal Physiol,2018,doi:10.1152/ajprenal.00072.2018
    47 Park C H,Valore E V,Waring A J,et al.Hepcidin,a urinary antimicrobial peptide synthesized in the liver.J Biol Chem,2001,276:7806-7810
    48 Nemeth E,Tuttle M S,Powelson J,et al.Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization.Science,2004,306:2090-2093
    49 Finberg K E,Heeney M M,Campagna D R,et al.Mutations in TMPRSS6 cause iron-refractory iron deficiency anemia(IRIDA).Nat Genet,2008,40:569-571
    50 Nicolas G,Chauvet C,Viatte L,et al.The gene encoding the iron regulatory peptide hepcidin is regulated by anemia,hypoxia,and inflammation.J Clin Invest,2002,110:1037-1044
    51 Pigeon C,Ilyin G,Courselaud B,et al.A new mouse liver-specific gene,encoding a protein homologous to human antimicrobial peptide hepcidin,is overexpressed during iron overload.J Biol Chem,2001,276:7811-7819
    52 Nemeth E,Rivera S,Gabayan V,et al.IL-6 mediates hypoferremia of inflammation by inducing the synthesis of the iron regulatory hormone hepcidin.J Clin Invest,2004,113:1271-1276
    53 Babitt J L,Huang F W,Wrighting D M,et al.Bone morphogenetic protein signaling by hemojuvelin regulates hepcidin expression.Nat Genet,2006,38:531-539
    54 Kautz L,Meynard D,Monnier A,et al.Iron regulates phosphorylation of SMAD1/5/8 and gene expression of BMP6,SMAD7,ID1,and ATOH8 in the mouse liver.Blood,2008,112:1503-1509
    55 Corradini E,Meynard D,Wu Q,et al.Serum and liver iron differently regulate the bone morphogenetic protein 6(BMP6)-SMAD signaling pathway in mice.Hepatology,2011,54:273-284
    56 Derynck R,Zhang Y E.Smad-dependent and Smad-independent pathways in TGF-beta family signalling.Nature,2003,425:577-584
    57 Casanovas G,Mleczko-Sanecka K,Altamura S,et al.Bone morphogenetic protein(BMP)-responsive elements located in the proximal and distal hepcidin promoter are critical for its response to HJV/BMP/SMAD.J Mol Med(Berl),2009,87:471-480
    58 Silvestri L,Pagani A,Camaschella C.Furin-mediated release of soluble hemojuvelin:A new link between hypoxia and iron homeostasis.Blood,2008,111:924-931
    59 Lin L,Goldberg Y P,Ganz T.Competitive regulation of hepcidin mRNA by soluble and cell-associated hemojuvelin.Blood,2005,106:2884-2889
    60 Silvestri L,Pagani A,Nai A,et al.The serine protease matriptase-2(TMPRSS6)inhibits hepcidin activation by cleaving membrane hemojuvelin.Cell Metab,2008,8:502-511
    61 Melis M A,Cau M,Congiu R,et al.A mutation in the TMPRSS6 gene,encoding a transmembrane serine protease that suppresses hepcidin production,in familial iron deficiency anemia refractory to oral iron.Haematologica,2008,93:1473-1479
    62 Folgueras A R,de Lara F M,Pendas A M,et al.Membrane-bound serine protease matriptase-2(TMPRSS6)is an essential regulator of iron homeostasis.Blood,2008,112:2539-2545
    63 Mleczko-Sanecka K,Casanovas G,Ragab A,et al.SMAD7 controls iron metabolism as a potent inhibitor of hepcidin expression.Blood,2010,115:2657-2665
    64 An P,Wang H,Wu Q,et al.Smad7 deficiency decreases iron and haemoglobin through hepcidin up-regulation by multilayer compensatory mechanisms.J Cell Mol Med,2018,22:3035-3044
    65 Goswami T,Andrews N C.Hereditary hemochromatosis protein,Hfe,interaction with transferrin receptor 2 suggests a molecular mechanism for mammalian iron sensing.J Biol Chem,2006,281(39):28494-28498
    66 Ramos E,Kautz L,Rodriguez R,et al.Evidence for distinct pathways of hepcidin regulation by acute and chronic iron loading in mice.Hepatology,2011,53:1333-1341
    67 Lebron J A,West A J,Bjorkman P J.The hemochromatosis protein Hfe competes with transferrin for binding to the transferrin receptor.JMol Biol,1999,294:239-245
    68 Chen J,Chloupkova M,Gao J,et al.Hfe modulates transferrin receptor 2 levels in hepatoma cells via interactions that differ from transferrin receptor 1-HFE interactions.J Biol Chem,2007,282:36862-36870
    69 West A J,Bennett M J,Sellers V M,et al.Comparison of the interactions of transferrin receptor and transferrin receptor 2 with transferrin and the hereditary hemochromatosis protein Hfe.J Biol Chem,2000,275:38135-38138
    70 D’Alessio F,Hentze M W,Muckenthaler M U.The hemochromatosis proteins Hfe,TfR2,and HJV form a membrane-associated protein complex for hepcidin regulation.J Hepatol,2012,57:1052-1060
    71 Wallace D F,Summerville L,Crampton E M,et al.Combined deletion of Hfe and transferrin receptor 2 in mice leads to marked dysregulation of hepcidin and iron overload.Hepatology,2009,50:1992-2000
    72 Ramey G,Deschemin J C,Vaulont S.Cross-talk between the mitogen activated protein kinase and bone morphogenetic protein/hemojuvelin pathways is required for the induction of hepcidin by holotransferrin in primary mouse hepatocytes.Haematologica,2009,94:765-772
    73 Shike H,Lauth X,Westerman M E,et al.Bass hepcidin is a novel antimicrobial peptide induced by bacterial challenge.Eur J Biochem,2002,269:2232-2237
    74 Nemeth E,Valore E V,Territo M,et al.Hepcidin,a putative mediator of anemia of inflammation,is a type II acute-phase protein.Blood,2003,101:2461-2463
    75 Lu Y C,Yeh W C,Ohashi P S.LPS/TLR4 signal transduction pathway.Cytokine,2008,42:145-151
    76 Shanmugam N K,Chen K,Cherayil B J.Commensal bacteria-induced interleukin 1beta(IL-1beta)secreted by macrophages up-regulates Hepcidin expression in hepatocytes by activating the bone morphogenetic protein signaling pathway.J Biol Chem,2015,290:30637-30647
    77 Besson-Fournier C,Latour C,Kautz L,et al.Induction of activin B by inflammatory stimuli up-regulates expression of the iron-regulatory peptide Hepcidin through Smad1/5/8 signaling.Blood,2012,120:431-439
    78 Canali S,Core A B,Zumbrennen-Bullough K B,et al.Activin B induces noncanonical SMAD1/5/8 signaling via BMP type I receptors in Hepatocytes:Evidence for a role in hepcidin induction by inflammation in male mice.Endocrinology,2016,157:1146-1162
    79 Bilezikjian L M,Turnbull A V,Corrigan A Z,et al.Interleukin-1beta regulates pituitary follistatin and inhibin/activin betaB mRNA levels and attenuates FSH secretion in response to activin-A.Endocrinology,1998,139:3361-3364
    80 Pak M,Lopez M A,Gabayan V,et al.Suppression of hepcidin during anemia requires erythropoietic activity.Blood,2006,108:3730-3735
    81 Gardenghi S,Marongiu M F,Ramos P,et al.Ineffective erythropoiesis in beta-thalassemia is characterized by increased iron absorption mediated by down-regulation of hepcidin and up-regulation of ferroportin.Blood,2007,109:5027-5035
    82 Jacobs K,Shoemaker C,Rudersdorf R,et al.Isolation and characterization of genomic and cDNA clones of human erythropoietin.Nature,1985,313:806-810
    83 Lin F K,Suggs S,Lin C H,et al.Cloning and expression of the human erythropoietin gene.Proc Natl Acad Sci USA,1985,82:7580-7584
    84 Vokurka M,Krijt J,Sulc K,et al.Hepcidin mRNA levels in mouse liver respond to inhibition of erythropoiesis.Physiol Res,2006,55:667-674
    85 Kautz L,Jung G,Valore E V,et al.Identification of erythroferrone as an erythroid regulator of iron metabolism.Nat Genet,2014,46:678-684
    86 Nai A,Rubio A,Campanella A,et al.Limiting hepatic BMP-SMAD signaling by matriptase-2 is required for erythropoietin-mediated hepcidin suppression in mice.Blood,2016,127:2327-2336
    87 Tanno T,Bhanu N V,Oneal P A,et al.High levels of GDF15 in thalassemia suppress expression of the iron regulatory protein hepcidin.Nat Med,2007,13:1096-1101
    88 Tanno T,Porayette P,Sripichai O,et al.Identification of TWSG1 as a second novel erythroid regulator of hepcidin expression in murine and human cells.Blood,2009,114:181-186
    89 Peyssonnaux C,Zinkernagel A S,Schuepbach R A,et al.Regulation of iron homeostasis by the hypoxia-inducible transcription factors(HIFs).J Clin Invest,2007,117:1926-1932
    90 Mastrogiannaki M,Matak P,Mathieu J R,et al.Hepatic hypoxia-inducible factor-2 down-regulates hepcidin expression in mice through an erythropoietin-mediated increase in erythropoiesis.Haematologica,2012,97:827-834
    91 Kuhrt D,Wojchowski D M.Emerging EPO and EPO receptor regulators and signal transducers.Blood,2015,125:3536-3541
    92 Tao Y,Wu Q,Guo X,et al.MBD5 regulates iron metabolism via methylation-independent genomic targeting of Fth1 through KAT2A in mice.Br J Haematol,2014,166:279-291
    93 Yang X,Park S H,Chang H C,et al.Sirtuin 2 regulates cellular iron homeostasis via deacetylation of transcription factor NRF2.J Clin Invest,2017,127:1505-1516
    94 Yin X,Wu Q,Monga J,et al.HDAC1 governs iron homeostasis independent of histone deacetylation in iron-overload murine models.Antioxid Redox Signal,2018,28:1224-1237
    95 Pasricha S R,Lim P J,Duarte T L,et al.Hepcidin is regulated by promoter-associated histone acetylation and HDAC3.Nat Commun,2017,8:403
    96 Brissot P,Pietrangelo A,Adams P C,et al.Haemochromatosis.Nat Rev Dis Primers,2018,4:18016
    97 Adams P C,Barton J C.How I treat hemochromatosis.Blood,2010,116:317-325
    98 Preza G C,Ruchala P,Pinon R,et al.Minihepcidins are rationally designed small peptides that mimic hepcidin activity in mice and may be useful for the treatment of iron overload.J Clin Invest,2011,121:4880-4888
    99 Guo S,Casu C,Gardenghi S,et al.Reducing TMPRSS6 ameliorates hemochromatosis and beta-thalassemia in mice.J Clin Invest,2013,123:1531-1541
    100 Zhang Y,Wang X,Wu Q,et al.Adenine alleviates iron overload by cAMP/PKA mediated hepatic hepcidin in mice.J Cell Physiol,2018,233:7268-7278.
    101 Jiang L,He X Y,Wei J Y,et al.Advances of phytochemicals in mediating micronutrients metabolisms.Chin Bull Life Sci,2015,27:1020-1027(in Chinese)[蒋丽,何旭艳,魏家玙,等.植物化合物调控微量营养素稳态代谢的研究进展.生命科学,2015,27:1020-1027]
    102 Fan K,Gao L,Yan X.Human ferritin for tumor detection and therapy.Wiley Interdiscip Rev Nanomed Nanobiotechnol,2013,5:287-298
    103 Shen Y,Posavec L,Bolisetty S,et al.Amyloid fibril systems reduce,stabilize and deliver bioavailable nanosized iron.Nat Nanotechnol,2017,12:642-647
    104 Fan J,Yin J J,Ning B,et al.Direct evidence for catalase and peroxidase activities of ferritin-platinum nanoparticles.Biomaterials,2011,32:1611-1618
    105 Ji T,Zhao Y,Wang J,et al.Tumor fibroblast specific activation of a hybrid ferritin nanocage-based optical probe for tumor microenvironment imaging.Small,2013,9:2427-2431
    106 Geninatti C S,Bussolati B,Tei L,et al.Magnetic resonance visualization of tumor angiogenesis by targeting neural cell adhesion molecules with the highly sensitive gadolinium-loaded apoferritin probe.Cancer Res,2006,66:9196-9201
    107 Makino A,Harada H,Okada T,et al.Effective encapsulation of a new cationic gadolinium chelate into apoferritin and its evaluation as an MRI contrast agent.Nanomedicine,2011,7:638-646
    108 Kilic M A,Ozlu E,Calis S.A novel protein-based anticancer drug encapsulating nanosphere:Apoferritin-doxorubicin complex.J Biomed Nanotechnol,2012,8:508-514
    109 Ji X T,Huang L,Huang H Q.Construction of nanometer cisplatin core-ferritin(NCC-F)and proteomic analysis of gastric cancer cell apoptosis induced with cisplatin released from the NCC-F.J Proteomics,2012,75:3145-3157
    110 Han J A,Kang Y J,Shin C,et al.Ferritin protein cage nanoparticles as versatile antigen delivery nanoplatforms for dendritic cell(DC)-based vaccine development.Nanomedicine,2014,10:561-569
    111 Kanekiyo M,Wei C J,Yassine H M,et al.Self-assembling influenza nanoparticle vaccines elicit broadly neutralizing H1N1 antibodies.Nature,2013,499:102-106
    112 Hua M Y,Yang H W,Liu H L,et al.Superhigh-magnetization nanocarrier as a doxorubicin delivery platform for magnetic targeting therapy.Biomaterials,2011,32:8999-9010
    113 Sato A,Itcho N,Ishiguro H,et al.Magnetic nanoparticles of Fe3O4 enhance docetaxel-induced prostate cancer cell death.Int J Nanomed,2013,8:3151-3160
    114 Yang H,Zhuang Y,Sun Y,et al.Targeted dual-contrast T1-and T2-weighted magnetic resonance imaging of tumors using multifunctional gadolinium-labeled superparamagnetic iron oxide nanoparticles.Biomaterials,2011,32:4584-4593
    115 Sonvico F,Mornet S,Vasseur S,et al.Folate-conjugated iron oxide nanoparticles for solid tumor targeting as potential specific magnetic hyperthermia mediators:Synthesis,physicochemical characterization,and in vitro experiments.Bioconjug Chem,2005,16:1181-1188
    116 Wang J,Tian S,Petros R A,et al.The complex role of multivalency in nanoparticles targeting the transferrin receptor for cancer therapies.J Am Chem Soc,2010,132:11306-11313
    117 Liu L,Wei Y,Zhai S,et al.Dihydroartemisinin and transferrin dual-dressed nano-graphene oxide for a pH-triggered chemotherapy.Biomaterials,2015,62:35-46
    118 Zhao S,Zhu X,Cao C,et al.Transferrin modified ruthenium nanoparticles with good biocompatibility for photothermal tumor therapy.JColloid Interface Sci,2018,511:325-334
    119 Liu D Z,Cheng Y,Cai R Q,et al.The enhancement of siPLK1 penetration across BBB and its anti glioblastoma activity in vivo by magnet and transferrin co-modified nanoparticle.Nanomedicine,2018,14:991-1003
    120 Korkusuz H,Ulbrich K,Welzel K,et al.Transferrin-coated gadolinium nanoparticles as MRI contrast agent.Mol Imaging Biol,2013,15:148-154

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700