基于配位调控机制的纳米钴电化学传感研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Investigation of a Nano Cobalt Electrochemical Sensor Based on Coordination Mechanism
  • 作者:武江艳 ; 何亚萍 ; 韩权 ; 杨晓慧 ; 霍燕燕
  • 英文作者:WU Jiang-yan;HE Ya-ping;HAN Quan;YANG Xiao-hui;HUO Yan-yan;School of Chemistry and Chemical Engineering,Yan'an University;School of Chemistry and Chemical Engineering,Xi'an University;
  • 关键词:电化学 ; 修饰电极 ; 5-(5-碘-2-吡啶偶氮)-2 ; 4-二氨基甲苯(5-I-PADAT) ; ; 纳米钴
  • 英文关键词:electrochemistry;;modified electrode;;5-(5-iodide-2-pyridylazo)-2,4-diamino toluene(5-I-PADAT);;hydrazine;;nano cobalt
  • 中文刊名:TEST
  • 英文刊名:Journal of Instrumental Analysis
  • 机构:延安大学化学与化工学院;西安文理学院化学工程学院;
  • 出版日期:2018-12-19
  • 出版单位:分析测试学报
  • 年:2018
  • 期:v.37
  • 基金:国家自然科学基金(21445004,21545014,21275116);; 陕西省创新能力支撑计划(2018KJXX-090);; 西安市科技计划项目(CXY1531WL22,2016CXWL09,2016CXWL18);; 陕西省教育厅重点实验室访问学者项目(14JS095);; 西安文理学院博士启动基金(06005017);; 大学生创新创业训练计划项目(201611080008,201613);; 陕西省分析化学重点学科项目(09009001)
  • 语种:中文;
  • 页:TEST201812014
  • 页数:6
  • CN:12
  • ISSN:44-1318/TH
  • 分类号:76-81
摘要
以钴离子(Co2+)与5-(5-碘-2-吡啶偶氮)-2,4-二氨基甲苯(5-I-PADAT)形成的配合物(Co2+-5-IPADAT)为支持电解质,采用循环伏安法,扫描电位范围-1. 5~0. 5 V,沉积50圈,制备获得Co NPs-5-I-PADAT修饰电极。采用扫描电子显微镜成像、X射线晶体衍射对其形貌及组成进行分析,并研究其对肼的电催化氧化行为。结果表明:在p H 7. 0的磷酸缓冲溶液中,电压位于0. 55 V处呈现显著的肼氧化峰。据此,建立了肼的定量分析方法,其线性范围为0. 64~2 150μmol/L,相关系数为0. 998 0,检出限(S/N=3)为0. 28μmol/L,回收率为95. 3%~102%。Co NPs-5-I-PADAT/GCE修饰电极具有良好的稳定性和选择性,可满足环境样品中肼的检测需求。
        A cobaltion-5-( 5-iodide-2-pyridylazo)-2,4-diamino toluene( 5-I-PADAT)( Co2 +-5-IPADAT) modified electrode was prepared via cyclic voltammetric electrodeposition with Co2 +-5-IPADAT,a coordination compound as supporting electrolyte in the scanning potential range of-1. 5-0. 5 V by 50 deposition circles. The morphology and composition of the modified electrode were characterized by scanning electron microscopy and X-ray crystalline diffraction. The electrocatalytic oxidation behavior of hydrazine on the modified electrode was also investigated. Results indicated that a significant hydrazine oxidation peak appeared at a potential of 0. 55 V in a p H 7. 0 phosphate buffer solution. Based on that,a novel method for the quantitative analysis of hydrazine was established.There was linear relationship for the oxidation peak current with hydrazine in the concentration range of 0. 64-2 150 μmol/L with a correlation coefficient of 0. 998 0. The detection limit( S/N = 3) was0. 28 μmol/L,and the recoveries were in the range of 95. 3%-102%. With the advantages of good reproducibility and selectivity,the sensor could satisfy the requirements for detection of hydrazine in environmental samples.
引文
[1] Xu Q,Li L H,Hu X Y. Chin. J. Anal. Lab.(徐琴,李丽花,胡效亚.分析试验室),2008,27(5):20-23.
    [2] Li J,Lin X Q. Sens. Actuators B,2007,126(2):527-535.
    [3] Wang Y,Yu H,Jian X,He X F,Qi G C. J. Instrum. Anal.(王毅,于浩,简选,贺小芳,齐广才.分析测试学报),2012,31(12):1581-1585.
    [4] Zhang Q,Gao C,Liang H R,Hou P. J. Instrum. Anal.(张琪,高潮,梁焕如,侯鹏.分析测试学报),2017,36(7):937-940.
    [5] Huang L,Li X B. Water Purif. Technol.(黄玲,李叙柏.净水技术),2016,35(3):51-53.
    [6] Wang R J,Zhu J D,Zhang L F,Xue F Q. Chin. J. Vet. Drug,2017,51(11):59-64.
    [7] Hosseini S R,Ghasemi S,Kamail-Rousta M. J. Power Sources,2017,343(1):467-476.
    [8] Wang W Q,Cui L J,Niu D,Ran Q,Liu S Q. Food Sci.(汪万强,崔莉娟,牛顿,冉茜,刘素芹.食品科学),2018,39(14):311-316.
    [9] Afshareas A,Tsyrulneva I,Zaporozhets O. Methods Objiects Chem. Anal.,2015,10(3):97-107.
    [10] Bastos R C,De-Carvalho J M,Da S I,Do C J S,Leandro K C. Vaccine,2010,28(34):5648-5651.
    [11] Guo Y J,Wang X F,Liu Z G,Zhang G J. J. Shanxi Univ.:Nat. Sci. Ed.(郭玉晶,王秀芳,刘志广,张国娟.山西大学学报:自然科学版),2017,40(3):554-562.
    [12] Han Q H. Fabrications and Applications of Electrochemical Sensors Based on Single-walled Carbon Nanohorn. Shenyang:Northeastern University(韩清华.基于单壁碳纳米角的电化学传感器的制备及应用.沈阳:东北大学),2012.
    [13] Das A K,Kim N H,Pradhan D,Hui D,Lee J H. Compos. Part B,2018,(144):11-18.
    [14] Ma X Y,Yang J M,Cai W S,Zhu G D,Liu J Y. J. Anal. Sci.(马小玉,杨健茂,蔡文姝,朱国栋,刘建允.分析科学学报),2017,33(1):37-41.
    [15] Pan B B,Xu J S,Zhang X B,Li J P,Wang M J,Ma J J,Liu L,Zhang D G,Tong Z W. J. Mater. Sci.,2018,53(9):6494-6504.
    [16] Yan X L,Meng F H,Cui S Z,Liu J G,Gu J,Zou Z G. J. Electroanal. Chem.,2011,661(1):44-48.
    [17] Zhou C H. The Fabrication and Analytical Application of Electrochemical Sensors Based on Nanoporous Gold. Changsha:Hunan Normal University(周超慧.基于纳米多孔金的电化学传感器的构建及其分析应用.长沙:湖南师范大学),2015.
    [18] Wang G F,Zhang C H,He X P,Li Z J,Zhang X J,Wang L. Electrochim. Acta,2010,55(24):7204-7210.
    [19] Asazawa K,Yamada K,Tanaka H,Taniguchi M,Oguro K. J. Power Sources,2009,191(2):362-365.
    [20] Li C X,Qiu X Y,Zhou J H,Ling Y L,Deng K Q. J. Anal. Sci.(李春香,邱喜阳,周建红,令玉林,邓克勤.分析科学学报),2015,31(4):475-478.
    [21] Wang Y,Liu L,Zhang D D,Xu S D,Li M. Electrocatalysis,2010,1(4):230-234.
    [22] Yang X H,Han Q,Li H W. Metall. Anal.(杨晓慧,韩权,李海维.冶金分析),2008,28(4):23-26.
    [23] Han Q,Hao T T,Huo Y Y,Jin Z,Yang X H. Metall. Anal.(韩权,郝甜甜,霍燕燕,金柱,杨晓慧.冶金分析),2015,35(3):64-68.
    [24] Han Q,Huo Y Y,Zhang Y L,Yang X H,Tian L. Chem. Reagents(韩权,霍燕燕,张亚利,杨晓慧,田丽.化学试剂),2010,32(9):824-826.
    [25] He Y P. Investigation of Electrochemical Sensing Based on Morphology Controllable Nanomaterials. Xi'an:Northwest University(何亚萍.基于形貌可控纳米材料的电化学传感研究.西安:西北大学),2013.
    [26] Mendoza-Huizar L H,Rios-Reyes C H,River-Hernandez M,Calan-Vidal C A. J. Mater. Process Technol.,2006,8(2):152-159.
    [27] Jin J,Yu H,Gao X L,Xu N,Qi G C. Chin. J. Anal. Lab.(金君,于浩,高小玲,徐娜,齐广才.分析试验室),2016,35(4):472-475.
    [28] Zare H R,Shishehbore M R,Nematollahi D,Tehrani M S. Sens. Actuators B,2010,151(1):153-161.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700