纳米磁性磷酸二氢钙对Cd的吸附、回收与再生
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Adsorption,Reclaim,and Regeneration of Cd by Magnetic Calcium Dihydrogen Phosphate Nanoparticles
  • 作者:李玉娇 ; 杨志敏 ; 陈玉成 ; 黄磊 ; 唐海燕
  • 英文作者:LI Yu-jiao;YANG Zhi-min;CHEN Yu-cheng;HUANG Lei;TANG Hai-yan;Chongqing Engineering Research Center of Rural Cleaning,College of Resources and Environment,Southwest University;
  • 关键词:磁性 ; 磷酸二氢钙 ; 纳米 ; Cd~(2+) ; 吸附
  • 英文关键词:magnetic;;calcium dihydrogen phosphate;;nanoparticles;;Cd~(2+);;adsorption
  • 中文刊名:HJKZ
  • 英文刊名:Environmental Science
  • 机构:西南大学资源环境学院农村清洁工程重庆市工程研究中心;
  • 出版日期:2018-11-15 17:58
  • 出版单位:环境科学
  • 年:2019
  • 期:v.40
  • 基金:国家重点研发计划项目(2017YFD0801004)
  • 语种:中文;
  • 页:HJKZ201904038
  • 页数:8
  • CN:04
  • ISSN:11-1895/X
  • 分类号:331-338
摘要
以Ca(H_2PO_4)_2、铁盐与亚铁盐为原料,采用共沉淀法制备成纳米磁性材料Ca(H_2PO_4)_2@Fe3O_4(NMCDP),研究其对Cd~(2+)的吸附、回收与再生效果.透射电镜(TEM)、红外光谱(FTIR)、X射线衍射(XRD)显示,NMCDP粒径约60 nm,稳定性良好,饱和磁化强度为30. 9 emu·g~(-1).吸附动力学表明,NMCDP对Cd~(2+)的吸附1 h之内即可达到平衡,符合准二级动力学模型.吸附热力学表明,NMCDP对Cd~(2+)的吸附符合Langmuir与Freundlich等温吸附模型,最大吸附量为142. 50 mg·g~(-1).在pH值由2增加到3时,吸附量随溶液初始pH值的升高而增加,当pH值大于3后,逐渐保持稳定;溶液中共存离子Na+、Mg~(2+)、Cu~(2+)对材料吸附Cd~(2+)均有一定的影响,影响程度Cu~(2+)> Mg~(2+)> Na+.采用0. 01 mol·L~(-1)HCl与EDTA-Na_2均可解吸出部分吸附的Cd~(2+),以EDTA-Na_2解吸率较高,达到68%,从而实现NMCDP的再生.
        In order to improve the adsorption-separation of Cd~(2+)in water treatment,magnetic Fe3 O_4 coated Ca( H_2 PO_4)_2 nanoparticles( NMCDP) were developed by coprecipitation. The properties of these nanoparticles were characterized by transmission electron microscopy( TEM), Fourier transform infrared spectroscopy( FTIR), X-ray diffraction( XRD), and magnetization curves.Experiments were carried out to investigate the effect of adsorption,reclaiming,and regeneration. The results showed that NMCDP was a stable material with a particle size of 60 nm and a saturation magnetization of 30. 9 emu·g~(-1). The adsorption rate of Cd~(2+)by NMCDP was fast,and adsorption equilibrium could be achieved within 1 hour. The kinetic data were well fitted by a pseudo-second-order model,and the isotherm adsorption data agreed with the Langmuir and Freundlich model,with a maximum adsorption capacity of142. 50 mg·g~(-1). The adsorption capacity of Cd~(2+)was affected by the pH and increased when the pH was increased from 2 to 3,while with continued increase of the pH of the solution,the adsorption capacity gradually became stable. The coexisting ions in the solution had an effect on the adsorption of Cd~(2+),especially the divalent cation Cu~(2+). The NMCDP could be regenerated by using 0. 01 mol·L~(-1) HCl and EDTA-Na_2,and the results indicated that it could be recycled with a desorption rate of 68% by EDTA-Na_2 solution.
引文
[1]康丽,刘文,刘晓娜,等.铌酸盐改性钛酸纳米片对水中Cd(Ⅱ)的吸附行为及机制[J].环境科学,2018,39(7):3212-3221.Kang L,Liu W,Liu X N,et al. Behavior and mechanisms of Cd(Ⅱ)adsorption from water by niobate-modified titanate nanosheets[J]. Environmental Science,2018,39(7):3212-3221.
    [2] Yang L,Wei Z G,Zhong W H,et al. Modifying hydroxyapatite nanoparticles with humic acid for highly efficient removal of Cu(Ⅱ)from aqueous solution[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2016,490:9-21.
    [3]余葱葱,赵委托,高小峰,等.陆浑水库饮用水源地水体中金属元素分布特征及健康风险评价[J].环境科学,2018,39(1):89-98.Yu C C,Zhao W T,Gao X F,et al. Distribution characteristics and health risk assessment of metals in drinking water sources from the Luhun reservoir[J]. Environmental Science,2018,39(1):89-98.
    [4] Cheng C,Wang J N,Yang X,et al. Adsorption of Ni(Ⅱ)and Cd(Ⅱ)from water by novel chelating sponge and the effect of Alkali-Earth metal ions on the adsorption.[J]. Journal of Hazardous Materials,2014,264:332-341.
    [5] Zhang Z H,Wang X J,Wang H,et al. Removal of Pb(Ⅱ)from aqueous solution using hydroxyapatite/calcium silicate hydrate(HAP/C-S-H)composite adsorbent prepared by a phosphate recovery process[J]. Chemical Engineering Journal,2018,344:53-61.
    [6] Bachoua H,Renaudin G,Badraoui B,et al. Preparation and characterization of functionalized hybrid hydroxyapatite from phosphorite and its potential application to Pb2+remediation[J].Journal of Sol-Gel Science and Technology,2016,78(3):621-631.
    [7] Mishra P M,Naik G K,Nayak A,et al. Facile synthesis of nano-structured magnetite in presence of natural surfactant for enhanced photocatalytic activity for water decomposition and Cr(Ⅵ)reduction[J]. Chemical Engineering Journal,2016,299:227-235.
    [8]朱梦飞.原位氧化Fe3O4膜对水溶液中Cd(Ⅱ)和Pb(Ⅱ)的去除性能研究[D].杨凌:西北农林科技大学,2016.Zhu M F. Removal of Cd(Ⅱ)and Pb(Ⅱ)from aqueous solutions using in situ oxidized Fe3O4membranes[D].Yangling:Northwest A&F University,2016.
    [9] Ma Z Y,Guan Y P,Liu H Z. Synthesis and characterization of Micron-Sized monodisperse superparamagnetic polymer particles with amino groups[J]. Journal of Polymer Science Part A:Polymer Chemistry,2005,43(15):3433-3439.
    [10] Ma H,Pu S Y,Hou Y Q,et al. A highly efficient magnetic chitosan “Fluid” adsorbent with a high capacity and fast adsorption kinetics for dyeing wastewater purification[J].Chemical Engineering Journal,2018,345:556-565.
    [11]方巧,林建伟,詹艳慧,等.羟基磷灰石-四氧化三铁-沸石复合材料制备及去除水中刚果红研究[J].环境科学,2014,35(8):2992-3001.Fang Q,Lin J W,Zhan Y H,et al. Synthesis of hydroxyapatite/magnetite/zeolite composite for Congo red removal from aqueous solution[J]. Environmental Science,2014,35(8):2992-3001.
    [12] Lee S Y,Choi H J. Persimmon leaf bio-waste for adsorptive removal of heavy metals from aqueous solution[J]. Journal of Environmental Management,2018,209:382-392.
    [13] Guo S Z,Jiao P P,Dan Z G,et al. Preparation of L-Arginine modified magnetic adsorbent by One-Step method for removal of Zn(Ⅱ)and Cd(Ⅱ)from aqueous solution[J]. Chemical Engineering Journal,2017,317:999-1011.
    [14] Zhou Q W,Liao B H,Lin L N,et al. Adsorption of Cu(Ⅱ)and Cd(Ⅱ)from aqueous solutions by ferromanganese binary oxide-biochar composites[J]. Science of the Total Environment,2018,615:115-122.
    [15] Son E B,Poo K M,Chang J S,et al. Heavy metal removal from aqueous solutions using engineered magnetic biochars derived from waste marine macro-algal biomass.[J]. Science of the Total Environment,2018,615:161-168.
    [16] Zhang X X,Sun C L,Zhang L,et al. Adsorption studies of cadmium onto magnetic Fe3O4@Fe PO4and its preconcentration with detection by electrothermal atomic absorption spectrometry[J]. Talanta,2018,181:352-358.
    [17] Meng J,Cui J L,Yu J,et al. Preparation of green chelating fibers and adsorption properties for Cd(Ⅱ)in aqueous solution[J]. Journal of Materials Science,2018,53(3):2277-2289.
    [18] Liu J F, Zhao Z S, Jiang G B. Coating Fe3O4magnetic nanoparticles with humic acid for high efficient removal of heavy metals in water[J]. Environmental Science&Technology,2008,42(18):6949-6954.
    [19] Shan R R,Yan L G,Yang K,et al. Adsorption of Cd(Ⅱ)by Mg-Al-CO3-and magnetic Fe3O4/Mg-Al-CO3-layered double hydroxides:Kinetic,isothermal,thermodynamic and mechanistic studies[J]. Journal of Hazardous Materials,2015,299:42-49.
    [20] Zhou H G,Jiang Z M,Wei S Q,et al. Adsorption of Cd(Ⅱ)from aqueous solutions by a novel layered double hydroxide Fe MnMg-LDH[J]. Water,Air,&Soil Pollution,2018,229(3):78.
    [21] Chand P, Pakade Y B. Synthesis and characterization of hydroxyapatite nanoparticles impregnated on apple pomace to enhanced adsorption of Pb(Ⅱ),Cd(Ⅱ),and Ni(Ⅱ)ions from aqueous solution[J]. Environmental Science and Pollution Research,2015,22(14):10919-10929.
    [22] Igberase E,Osifo P,Ofomaja A. The adsorption of Pb,Zn,Cu,Ni,and Cd by modified ligand in a single component aqueous solution:equilibrium,kinetic,thermodynamic,and desorption studies[J]. International Journal of Analytical Chemistry,2017,2017:6150209.
    [23] Zhao J J,Niu Y Z,Ren B,et al. Synthesis of schiff Base functionalized superparamagnetic Fe3O4composites for effective removal of Pb(Ⅱ)and Cd(Ⅱ)from aqueous solution[J].Chemical Engineering Journal,2018,347:574-584.
    [24] Zhang C,Shan B Q,Tang W Z,et al. Comparison of cadmium and lead sorption by Phyllostachys pubescens biochar produced under a low-oxygen pyrolysis atmosphere[J]. Bioresource Technology,2017,238:352-360.
    [25] Jin X Z,Wu X W,Zhang H Y,et al. Novel humic acid-based carbon materials:adsorption thermodynamics and kinetics for cadmium(Ⅱ)ions[J]. Colloid and Polymer Science,2018,296(3):537-546.
    [26] Yuan F,Gong J L,Zeng G M,et al. Adsorption of Cd(Ⅱ)and Zn(Ⅱ)from aqueous solutions using magnetic hydroxyapatite nanoparticles as adsorbents[J]. Chemical Engineering Journal,2010,162(2):487-494.
    [27] Wang Y J,Chen J H,Cui Y X,et al. Effects of low-molecularweight organic acids on Cu(Ⅱ)adsorption onto hydroxyapatite nanoparticles[J]. Journal of Hazardous Materials,2009,162(2-3):1135-1140.
    [28]蒋顺成,秦睿,李满林,等. EDTA-nSiO2纳米颗粒对Cd2+的吸附[J].环境科学,2016,37(9):3480-3487.Jiang S C,Qin R,Li M L,et al. Adsorption Cd2+from solution by EDTA-modified silicate nanoparticles[J]. Environmental Science,2016,37(9):3480-3487.
    [29]赵凡,陈秀梅,张文刚,等.氨基和羧基功能化磁性微球去除水溶液中Cd(Ⅱ)和Pb(Ⅱ)[J].硅酸盐通报,2017,36(12):4302-4307.Zhao F,Chen X M,Zhang W G,et al. Removal of Cd(Ⅱ)and Pb(Ⅱ)in aqueous solution by amino and carboxyl functionalized magnetic microspheres[J]. Bulletin of the Chinese Ceramic Society,2017,36(12):4302-4307.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700