青藏铁路含融化夹层路基热力响应监测分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The monitoring analysis of the thermal-mechanical response on embankment with thawed interlayer along Qinghai-Tibet Railway
  • 作者:王宏磊 ; 孙志忠 ; 刘永智 ; 武贵龙
  • 英文作者:WANG Hong-lei;SUN Zhi-zhong;LIU Yong-zhi;WU Gui-long;State Key Laboratory of Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resource, Chinese Academy of Science;University of Chinese Academy of Science;
  • 关键词:青藏铁路 ; 多年冻土 ; 融化夹层 ; 路基稳定性
  • 英文关键词:Qinghai-Tibet railway;;permafrost;;thawed interlayer;;stability of embankment
  • 中文刊名:YTLX
  • 英文刊名:Rock and Soil Mechanics
  • 机构:中国科学院西北生态环境资源研究院冻土工程国家重点实验室;中国科学院大学;
  • 出版日期:2019-01-29 10:31
  • 出版单位:岩土力学
  • 年:2019
  • 期:v.40;No.304
  • 基金:国家自然科学基金项目(No.41571064,No.41630636);; 冻土工程国家重点实验室自主研究项目(No.SKLFSE-ZT-09)~~
  • 语种:中文;
  • 页:YTLX201907037
  • 页数:10
  • CN:07
  • ISSN:42-1199/O3
  • 分类号:352-361
摘要
基于青藏铁路沿线P32和P33监测断面连续10年的含融化夹层路基的地温和变形场地实测数据,分析了该两处监测断面左路肩下多年冻土人为上限、季节冻结最大深度、融化夹层厚度及多年冻土人为上限附近地温的年变化过程;同时分析了P32和P33监测断面左右路肩的总沉降年变化过程、P32监测断面左路肩地温场对变形的影响及P33监测断面左右路肩地温场差异对左右路肩差异沉降的影响。结果表明:P32和P33监测断面左路肩下多年冻土人为上限逐年下降、季节冻结最大深度基本不变、融化夹层厚度逐年增厚及多年冻土人为上限附近地温逐年升高;观测期内,P32和P33监测断面左右路肩变形均以沉降为主,且P32监测断面左右路肩的总沉降变形量均小于P33监测断面;其中P32监测断面左路肩暖季沉降变形明显,冷季发生轻微的冻胀变形,且发生沉降和冻胀的时间略滞后于路基下部温度场的变化;P33监测断面左右路肩地温场的差异导致左右路肩存在差异沉降,且其差异沉降值随时间逐年变大。
        Based on the ground temperature and deformation of the embankment with thawed interlayer at the monitoring sections of P32 and P33 along Qinghai-Tibet railway from 2005 to 2015, artificial permafrost table, maximum seasonal frozen depth, thickness of thawed interlayer and annual process of the ground temperature nearby artificial permafrost table are analyzed. Meantime, annual process of the total settlement of left and right shoulder at P32 and P33 sections, the effect of ground temperature at the left shoulder on deformation at P32 section and the effect of ground temperature difference at the left and right shoulder on its difference of settlement at P33 section are investigated. The results indicate that: at P32 and P33 sections, artificial permafrost table of left shoulder descended annually, maximum seasonal frozen depth remained nearly constant, thickness of the thawed interlayer thickened and the ground temperature nearby artificial permafrost table increased annually; during the monitoring period, the left and right shoulder deformation all performed mainly settlement and its magnitude at P32 section was smaller than at P33 section. Moreover, at P32 section, left shoulder settled during warm season and frost heave occurred slightly during cold season. The occurrence of settlement and frost heave lagged the variation of the ground temperature. The temperature difference can lead to differential settlement under left and right shoulder at the monitoring section of P33, and its value increased annually.
引文
[1]ANDERSLAND O B,LADANYI B.Frozen ground engineering[M].New Jersey:John Wiley and Sons Inc.,2004.
    [2]周幼吾,郭东信,邱国庆,等.中国冻土[M].北京:科学出版社,2000.ZHOU You-wu,GUO Dong-xin,QIU Guo-qing,et al.Geocryology in China[M].Beijing:Science Press,2000.
    [3]潘卫东,余绍水,贾海峰,等.青藏铁路沿线多年冻土区地温场变化规律[J].冰川冻土,2002,24(6):774-779.PAN Wei-dong,YU Shao-shui,JIA Hai-feng,et al.Variation of the ground temperature field in permafrost regions along the Qinghai-Tibetan railway[J].Journal of Glaciology and Geocryology,2002,24(6):774-779.
    [4]赵红岩,江灏,王可丽,等.青藏铁路沿线地表融冻指数的计算分析[J].冰川冻土,2008,30(4):617-22.ZHAO Hong-yan,JIANG Hao,WANG Ke-li,et al.The surface thawing-freezing indexes along the Qinghai-Tibet railway:analysis and calculation[J].Journal of Glaciology and Geocryology,2008,30(4):617-22.
    [5]MA W,QI J L,WU Q B.Analysis of the deformation of embankments on the Qinghai-Tibet railway[J].Journal of Geotechnical and Geoenvironmental Engineering,2008,134(11):1645-1654.
    [6]马巍,刘端,吴青柏.青藏铁路冻土路基变形监测与分析[J].岩土力学,2008,29(3):571-579.MA Wei,LIU Duan,WU Qing-bai.Monitoring and analysis of embankment deformation in permafrost regions of Qinghai-Tibet railway[J].Rock and soil Mechanics,2008,29(3):571-579.
    [7]WU Q B,SHI B,FANG H Y.Engineering geological characteristics and processes of permafrost along the Qinghai-Xizang(Tibet)highway[J].Engineering Geology,2003,68(3-4):387-396.
    [8]WU Q B,LIU Y Z.Ground temperature monitoring and its recent change in Qinghai-Tibet Plateau[J].Cold Regions Science and Technology,2004,38(2-3):85-92.
    [9]ALLEY R B,BERNTSEN T,BINDOFF N L,et al.Summary for policymakers[M].Cambridge:Cambridge University Press,2007:1-18.
    [10]STOCKER T F,QIN D,PLATTBER G K,et al.The physical science basis:contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change[J].Computational Geometry,2013(18):95-123.
    [11]潘保田,李吉均.青藏高原:全球气候变化的驱动机与放大器--Ⅲ.青藏高原隆起对气候变化的影响[J].兰州大学学报(自然科学版),1996,32(1):108-115.PAN Bao-tian,LI Ji-jun.Qinghai-Tibetan plateau:a driver and amplifer of the global climate change-Ⅲ:The effects of uplift of Qinghai-Tibetan plateau on climate changes[J].Jounral of Lanzhou University(Natural Sciences),1996,32(1):108-115.
    [12]程国栋.用冷却路基的方法修建青藏铁路[J].中国铁道科学,2003,24(6):1-4.CHENG Guo-dong.Construction of Qinghai-Tibet railway with cooled roadbed[J].China Railway Science,2003,24(6):1-4.
    [13]秦大河.中国西部环境演变评估[M].北京:科学出版社,2002.QIN Da-he.Assessment of environmental evolution in the Western China[M].Beijing:Science Press,2002.
    [14]YU F,QI J L,YAO X L,et al.Degradation process of permafrost underneath embankments along Qinghai-Tibet highway:an engineering view[J].Cold Regions Science and Technology,2013,85(1):150-156.
    [15]温智,盛煜,马巍,等.退化性多年冻土地区公路路基地温和变形规律[J].岩石力学与工程学报,2009,28(7):1477-1483.WEN Zhi,SHENG Yu,MA Wei,et al.Ground temperature and deformation laws of highway embankment in degenerative permafrost regions[J].Chinese Journal of Rock Mechanics and Engineering,2009,28(7):1477-1483.
    [16]袁堃,章金钊,朱东鹏.深上限-退化型多年冻土路基变形特征分析[J].岩土力学,2013,34(13):3543-3548.YUAN Kun,ZHANG Jin-zhao,ZHU Dong-peng.Analysis of deformation characteristics of embankment with deep permafrost table and degenerative permafrost[J].Rock and Soil Mechanics,2013,34(13):3543-3548.
    [17]XIONG Z W,YANG Y P,ZHU Z R,et al.Effect of climate change and railway embankment on the degradation of underlain permafrost[J].Sciences in Cold and Arid Regions,2015(7):554-559.
    [18]吴吉春,盛煜,吴青柏,等.青藏高原多年冻土退化过程及方式[J].中国科学(D辑:地球科学),2009,39(11):1570-1578.WU Ji-chun,SHENG Yu,WU Qing-bai,et al.Processes and modes of permafrost degradation on the Qinghai-Tibet plateau[J].Science in China(Series D:Earth Science),2009,39(11):1570-1578.
    [19]金会军,赵林,王绍令,等.青藏公路沿线冻土的地温特征及退化方式[J].中国科学(D辑:地球科学),2006,36(11):1009-1019.JIN Hui-jun,ZHAO Lin,WANG Shao-ling,et al.Degradation modes and ground temperature of permafrost along Qinghai-Tibet highway[J].Science in China(Series D:Earth Science),2006,36(11):1009-1019.
    [20]杨立峰,李积珍,王小岗.影响多年冻土上限下降的因素及防护措施[J].青海大学学报(自然科学版),2005,23:30-32.YANG Li-feng,LI Ji-zhen,WANG Xiao-gang.Analysis of factors which result in the upper limit descending of permafrost and its prevention measures[J].Journal of Qinghai University(Nature Science),2005,23:30-32.
    [21]王银学,赵林,李韧,等.影响多年冻土上限变化的因素探讨[J].冰川冻土,2011,33(10):1064-1067.WANG Yin-xue,ZHAO Lin,LI Ren,et al.A study of factors which control variation of permafrost table[J].Journal of Glaciology and Geocryology,2011,33(10):1064-1067.
    [22]LI S X,CHENG G D,GUO D X.The future thermal regime of numerical simulating permafrost on Qinghai-Xizang(Tibet)Plateau,China,under climate warming[J].Science in China(Series D),1996,39(4):81-89.
    [23]NAN Z T,LI S X,CHENG G D.Prediction of permafrost distribution on the Qinghai-Tibet plateau in the next 50and 100 years[J].Science in China(Series D:Earth Science),2005,48(6):797-804.
    [24]WANG S L,JIN H J,LI S X,et al.Permafrost degradation on the Qinghai-Tibet plateau and its environmental impacts[J].Permafrost and Periglacial Processes,2000,11(1-3):43-53.
    [25]YANG M X,NELSON F E,SHIKLOMANOV N I,et al.Permafrost degradation and its environmental effects on the Tibetan Plateau:A review of recent research[J].Earth Science Reviews,2010,103(1-2):31-44.
    [26]吴青柏,刘永智,朱元林.青藏公路沥青路面下活动层的热状态分析[J].西安公路交通大学学报,2001,21(1):23-25.WU Qing-bai,LIU Yong-zhi,ZHU Yuan-lin.Thermal state of active layer under asphalt pavement of Qinghai-Tibet highway[J].Journal of Xi’an Highway University,2001,21(1):23-25.
    [27]汪双杰,李祝龙,章金钊,等.多年冻土地区公路修筑技术[M].北京:人民交通出版社,2008.WANG Shuang-jie,LI Zhu-long,ZHANG Jin-zhao,et al.Highway construction technology on permafrost regions[M].Beijing:China Communication Press,2008.
    [28]孙志忠,马巍,刘永智,等.青藏公路路基下融化夹层的变化及对路基沉降的影响[J].中外公路,2015,36(6):14-18.SUN Zhi-zhong,MA Wei,LIU Yong-zhi,et al.Changes of thawed interlayer beneath embankment of the Qinghai-Tibet highway in permafrost regions and its effect on embankment settlement deformation[J].Journal of China and Foreign Highway,2015,36(6):14-18.
    [29]李述训,吴紫汪.青藏高原多年冻土区沥青路面下融化盘形成变化特征[J].冰川冻土,1997,21(1):23-25.LI Shu-xun,WU Zi-wang.The change of thaw bulb under asphalt pavement in the region of permafrost on the Tibetan Plateau[J].Journal of Glaciology and Geocryology,1997,21(1):23-25.
    [30]陈冬根,汪双杰,陈建兵,等.融化夹层厚度影响因素分析与片块石路基降温效果研究[J].冰川冻土,2014,36(4):854-861.CHEN Dong-gen,WANG Shuang-jie,CHEN Jian-bing,et al.Study of the factors influencing the thickness of residual thawed interlayers and cooling effect of block-stone embankment[J].Journal of Glaciology and Geocryology,2014,36(4):854-861.
    [31]王小军,姜珂,魏永梁,等.青藏铁路多年冻土区路堤人为上限与融化夹层的数值模拟分析[J].水文地质工程地质,2010,37(5):50-56.WANG Xiao-jun,JIANG Ke,WEI Yong-liang,et al.Numerical simulation analyses of artificial upper table and residual thawed layer for embankment of Qinghai-Tibet railway in the permafrost region[J].Hydrogeology and Engineering Geology,2010,37(5):50-56.
    [32]马勤国,赖远明,吴道勇.多年冻土区高等级公路路基温度场研究[J].中南大学学报(自然科学版),2016,47(7):2415-2423.MA Qin-guo,LAI Yuan-ming,WU Dao-yong.Analysis of temperature field of high grade highway embankment in permafrost regions[J].Journal of Central South University(Science and Technology),2016,47(7):2415-2423.
    [33]CHENG G D,WU T H.Responses of permafrost to climate change and their environmental significance,Qinghai-Tibet plateau[J].Journal of Geophysical Research,2007(112):F02S03.
    [34]WU Q B,ZHANG T J.Changes in active layer thickness over the Qinghai-Tibetan plateau from 1995 to 2007[J].Journal of Geophysical Research Atmospheres,2010,115(5):D09107.
    [35]WU Q B,ZHANG T J,LIU Y.Thermal state of the active layer and permafrost along the Qinghai-Xizang(Tibet)railway from 2006 to 2010[J].Cryosphere,2012,6(3):2465-2481.
    [36]孙志忠,马巍,党海明,等.青藏铁路多年冻土区路基变形特征及其来源[J].岩土力学,2013,34(9):2667-2671.SUN Zhi-zhong,MA Wei,DANG Hai-ming,et al.Characteristics and causes of embankment deformation for Qinghai-Tibet railway in permafrost regions[J].Rock and Soil Mechanics,2013,34(9):2667-2671.
    [37]徐敩祖,王家澄,张立新.冻土物理学[M].北京:科学出版社,2010.XU Xiao-zu,WANG Jia-cheng,ZHANG Li-xin.Physics of frozen soils[M].Beijing:Science Press,2010.
    [38]中华人民共和国铁道部.TB10001-2005铁路路基设计规范[S].北京:中国铁道出版社,2005.Ministry of Railway of the People’s Republic of China.TB10001-2005 Code of railway subgrade design[S].Beijing:China Railway Press,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700