梳状热塑性聚氨酯基固态聚合物电解质的制备与性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Solid Polymer Electrolytes Based on Comb-Like Thermoplastic Polyurethane
  • 作者:宋有信 ; 任乃青 ; 丛冰 ; 鲍俊杰 ; 陶灿 ; 许戈文 ; 黄毅萍 ; 程芹
  • 英文作者:Youxin Song;Naiqing Ren;Bing Cong;Junjie Bao;Can Tao;Gewen Xu;Yiping Huang;Qin Cheng;School of Chemistry and Chemical Engineering, Anhui University,Key Laboratory of Environment-Friendly Polymer Materials of Anhui Province, Anhui Province Engineering Technology Research Center of Water-Borne Polymer Materials;
  • 关键词:热塑性聚氨酯 ; 固态聚合物电解质 ; 三羟甲基丙烷聚乙二醇单甲醚 ; 离子电导率
  • 英文关键词:thermoplastic polyurethane;;solid polymer electrolytes;;trimethylolpropane polyethylene glycol monomethyl ether;;ionic conductivity
  • 中文刊名:GFZC
  • 英文刊名:Polymer Materials Science & Engineering
  • 机构:安徽大学化学化工学院安徽省绿色高分子材料重点实验室水基高分子材料安徽省工程技术研究中心;
  • 出版日期:2019-03-11 11:00
  • 出版单位:高分子材料科学与工程
  • 年:2019
  • 期:v.35
  • 基金:安徽高校自然科学研究项目(KJ2017A031)
  • 语种:中文;
  • 页:GFZC201902008
  • 页数:7
  • CN:02
  • ISSN:51-1293/O6
  • 分类号:52-58
摘要
以三羟甲基丙烷聚乙二醇单甲醚(Ymer-N120)、聚对苯二甲酸-3-甲基-1,5-戊二醇酯二醇(TPA-1000)、异佛尔酮二异氰酸酯和1,4-丁二醇合成了系列具有梳状结构的热塑性聚氨酯弹性体(TPU),再在TPU中加入锂盐得到系列固态聚合物电解质(SPEs);研究了TPA-1000和Ymer-N120加入量对固态聚合物电解质性能的影响。结果表明,制备的SPEs离子电导率与温度的关系符合Arrhenius方程,随着Ymer-N120含量的增加,SPEs的玻璃化转变温度降低,拉伸强度减小,其中以质量比m(TPA-1000)∶m(Ymer-N120)=1∶2制备的固态聚合物电解质(SPE4)综合性能最佳,拉伸强度为0.88 MPa、80℃时离子电导率为1.07×10~(-4) S/cm,以SPE4组装的LiFePO_4/SPE4/Li全固态电池在80℃、0.2 C下的放电比容量为138 mA·h/g。
        A series of comb-like thermoplastic polyurethane(TPU) with trimethylolpropane polyethylene glycol monomethyl ether(Ymer-N120), poly-terephthalic acid-3-methyl-1,5-amyl glycol ester diol(TPA-1000), isophorone diisocyanate and 1,4-butanediol were synthesized. Solid polymer electrolytes(SPEs) were fabricated by adding LiTFSI to TPU with the content of 20%. The influence of the amount of TPA-1000 and Ymer-N120 on properties of the SPEs was discussed. The results show that the relationship between the ionic conductivity of the SPEs and temperature is consistent with the Arrhenius equation. The glass transition temperature and tensile strength decrease with the increase of Ymer-N120 content. The comprehensive properties of electrolyte are obtained when the mass ratio of Ymer-120 and TPA-1000 is 1∶2(SPE4). The tensile strength of SPE4 is 0.88 MPa with the ionic conductivity of 1.07×10~(-4) S/cm at 80 ℃. The discharge capacity of the solid-state lithium battery assembled by SPE4 reaches 138 mA·h/g at 0.2 C under 80 ℃.
引文
[1] Shim J, Kim L, Kim H J, et al. All-solid-state lithium metal battery with solid polymer electrolytes based on polysiloxane crosslinked by modified natural gallic acid[J]. Polymer, 2017, 122: 222-231.
    [2] Zainab G, Wang X, Yu J, et al. Electrospun polyacrylonitrile/polyurethane composite nanofibrous separator with electrochemical performance for high power lithium ion batteries[J]. Mater. Chem. Phys., 2016, 182: 308-314.
    [3] Mustapa S R, Aung M M, Ahmad A, et al. Preparation and characterization of Jatropha oil-based polyurethane as non-aqueous solid polymer electrolyte for electrochemical devices[J]. Electrochim. Acta, 2016, 222: 293-302.
    [4] 陈虎, 王世洋, 余文军, 等. KH550 改性水性聚氨酯基聚合物电解质[J]. 化学推进剂与高分子材料, 2015, 13(6): 76-80.Chen H, Wang S Y, Yu W J, et al. KH550 modified waterborne polyurethane-based polymer electrolytes[J]. Chemical Propellants & Polymeric Materials, 2015, 13(6): 76-80.
    [5] 朱春柳, 陶灿, 鲍俊杰, 等. 水性聚氨酯基聚合物电解质的制备及性能研究[J]. 塑料工业, 2015, 43(12): 132-136.Zhu C L, Tao C, Bao J J, et al. Study on the preparation and properties of polymer electrolytes based on waterborne polyurethane[J]. China Plastics Industry, 2015, 43(12): 132-136.
    [6] 骆伟新, 刘煜平, 杨树颜, 等. 新型梳状聚甲基丙烯酸酯固态聚合物电解质的制备及导电性能研究[J]. 高分子学报, 2013 (1): 63-71. Luo W X, Liu Y P, Yang S Y, et al. Synthesis and conduction mechanism of comb-like polymethacrylate solid polymer electrolytes[J]. Acta Polymerica Sinica, 2013 (1): 63-71.
    [7] 张良良, 林强, 姚机艳, 等. 蜜胺树脂交联改性水性聚氨酯的制备与性能研究[J]. 塑料工业, 2016 (11): 54-58. Zhang L L, Lin Q, Yao J Y, et al. Preparation and properties of waterborne polyurethane from melamine resin by crosslinking modification[J]. China Plastics Industry, 2016 (11): 54-58.
    [8] Liu L, Wu X, Li T. Novel polymer electrolytes based on cationic polyurethane with different alkyl chain length[J]. J. Power Sources, 2014, 249: 397-404.
    [9] Mustapa S R, Aung M M, Ahmad A, et al. Preparation and characterization of Jatropha oil-based polyurethane as non-aqueous solid polymer electrolyte for electrochemical devices[J]. Electrochim. Acta, 2016, 222: 293-302.
    [10] Ren N, Song Y, Tao C, et al. Effect of the soft and hard segment composition on the properties of waterborne polyurethane-based solid polymer electrolyte for lithium ion batteries[J]. J. Solid State Electrochem., 2018, 22: 1109-1121.
    [11] Wu J, Chen D. Synthesis and characterization of waterborne polyurethane based on covalently bound dimethylol propionic acid to e-caprolactone based polyester polyol[J]. Prog. Org. Coat., 2016, 97: 203-209.
    [12] Ge Z, Huang C, Zhou C, et al. Synthesis of a novel UV crosslinking waterborne siloxane-polyurethane[J]. Prog. Org. Coat., 2016, 90: 304-308.
    [13] 朱春柳, 陶灿, 鲍俊杰, 等. 梳状水性聚氨酯固态聚合物电解质的制备及性能[J]. 高分子材料科学与工程, 2016, 32(7): 17-23. Zhu C L, Tao C, Bao J J, et al. Preparation and properties of solid polymer electrolytes based on comb like waterborne polyurethane[J]. Polymer Materials Science & Engineering, 2016, 32(7): 17-23.
    [14] Zhao Y, Huang Z, Chen S, et al. A promising PEO/LAGP hybrid electrolyte prepared by a simple method for all-solid-state lithium batteries[J]. Solid State Ionics, 2016, 295: 65-71.
    [15] Han P, Zhu Y, Liu J. An all-solid-state lithium ion battery electrolyte membrane fabricated by hot-pressing method[J]. J. Power Sources, 2015, 284: 459-465.
    [16] Wakayama H, Yonekura H, Kawai Y. Three-dimensional bicontinuous nanocomposite from a self-assembled block copolymer for a high-capacity all-solid-state lithium battery cathode[J]. Chem. Mater., 2016, 28: 4453-4459.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700