等通道转角挤压Mg-3.52Sn-3.32Al合金的组织与力学性能(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Microstructure and Tensile Properties of Solutionized Mg-3.52Sn-3.32Al Alloy Deformed by Equal Channel Angular Pressing
  • 作者:张忠明 ; 任倩玉 ; 任伟 ; 黄正华 ; 徐春杰 ; 惠增哲
  • 英文作者:Zhang Zhongming;Ren Qianyu;Ren Weiwei;Huang Zhenghua;Xu Chunjie;Xi Zengzhe;Key Laboratory of Electrical Materials and Infiltration Technology of Shaanxi Province, Xi'an University of Technology;Guangdong Provincial Key Laboratory for Technology and Application of Metal Toughening, Guangdong Institute of Materials and Processing;Shaanxi Key Laboratory of Optoelectronic Functional Materials and Devices, Xi'an Technological University;
  • 关键词:镁-锡-铝合金 ; 等通道转角挤压 ; 组织 ; 力学性能
  • 英文关键词:magnesium-tin-aluminum alloy;;equal channel angular pressing;;microstructure;;mechanical property
  • 中文刊名:COSE
  • 英文刊名:Rare Metal Materials and Engineering
  • 机构:西安理工大学陕西省电工材料与熔(浸)渗技术重点实验室;广东省材料与加工研究所广东省金属强韧化技术与应用重点实验室;西安工业大学陕西省光电功能材料与器件重点实验室;
  • 出版日期:2019-02-15
  • 出版单位:稀有金属材料与工程
  • 年:2019
  • 期:v.48;No.391
  • 基金:Shaanxi Provincial Science and Technology Plan Project(2010K10-08);; Scientific Research Project of Education Department of Shaanxi Province(2013JK0906);; Fund of Shaanxi Key Laboratory of Optoelectronic Functional Materials and Devices(ZSKJ201302);; Natural Science Foundation of Guangdong Province(2016A030313802);; Project on Scientific Research of Guangzhou City(201707010393)
  • 语种:英文;
  • 页:COSE201902004
  • 页数:9
  • CN:02
  • ISSN:61-1154/TG
  • 分类号:33-41
摘要
采用等通道转角挤压(ECAP)Bc路径对固溶态Mg-3.52Sn-3.32Al合金分别挤压1、4和8道次。利用光学显微镜、扫描电子显微镜、透射电子显微镜和X射线衍射仪分析合金的组织和相组成,并测试了其室温拉伸性能。结果表明,经ECAP挤压后,固溶态合金组织中析出大量细小的Mg2Sn相和极少量的Mg17Al12相。随挤压道次增加,合金的综合力学性能先提高后降低。经4道次挤压后,合金的综合拉伸性能相对较佳,抗拉强度、伸长率和硬度HV9.8分别达到250 MPa、20.5%和613 MPa,较未ECAP时分别提高43.7%、105%和26.9%。经ECAP挤压的合金室温拉伸断口均呈韧性断裂。等通道转角挤压Mg-3.52Sn-3.32Al合金的力学性能受晶粒尺寸、析出相以及组织织构的共同影响。
        The solutionized Mg-3.52 Sn-3.32 Al alloy was processed by equal channel angular pressing(ECAP) via route Bc for 1, 4, and 8 passes. The microstructure and phase composition of the alloy were analyzed by optical microscope, scanning electron microscopy, transmission electron microscopy and X-ray diffraction, and the room-temperature mechanical properties were measured. The results show that many fine Mg2 Sn particles and a few Mg17 Al12 phases precipitate in the alloy after ECAP. The mechanical properties first increase and then gradually decrease with increasing the extrusion passes. The alloy possesses better mechanical properties after ECAP for four passes, and the ultimate tensile strength, elongation and hardness HV9.8 increase to 250 MPa, 20.5% and 613 MPa, respectively, which are increased by 43.7%, 105% and 26.9% compared with that of the solutionized alloy, respectively. The room temperature fractograph of the ECAP processed alloy is a ductile-fractured morphology under tensile conditions. The mechanical properties of the ECAP processed Mg alloy depend on the grain size, precipitate and texture.
引文
1 Mordike B L,Ebert T.Materials Science and Engineering A[J],2001,302(1):37
    2 Mordike B L.Materials Science and Engineering A[J],2002,324(1-2):103
    3 Huang Zhenghua,Qi Wenjun,Xu Jing et al.Materials Research and Application[J],2014,8(4):221(in Chinese)
    4 Pan Yu,Zhang Diantao,Tan Yuning et al.Acta Metallurgica Sinica[J],2017,53(10):1357(in Chinese)
    5 Zhou Dianwu,Xu Shaohua,Zhang Fuquan et al.The Chinese Journal of Nonferrous Metals[J],2010,20(5):914(in Chinese)
    6 Wang Feng,Sun Shijie,An Shuaijie.Transactions of Materials and Heat Treatment[J],2015,36(S1):72(in Chinese)
    7 Zheng Liuwei,Wang Hongxia,Yin Yaopeng et al.Transactions of Materials and Heat Treatment[J],2016,37(6):61(in Chinese)
    8 Kang Zhixin,Peng Yonghui,Kong Jing et al.Rare Metal Materials and Engineering[J],2012,41(2):215(in Chinese)
    9 Ren Guocheng,Zhao Guoqun.Journal of Materials Engineering[J],2013,10:13(in Chinese)
    10 Ehsan Mostaed,Mazdak Hashempour,Alberto Fabrizi et al.Journal of the Mechanical Behavior of Biomedical Materials[J],2014,37:307
    11 Zhai Qiuya,Wang Zhiming,Yuan Sen et al.Journal of Xi'an University of Technology[J],2002,18(3):254(in Chinese)
    12 Liu Chuming,Zhu Xiurong,Zhou Haitao.Phase Diagrams for Magnesium Alloys[M].Changsha:Central South University Press,2006:292(in Chinese)
    13 Dai Yongnian.Binary Alloy Phase Diagrams[M].Beijing:Science Press,2009(in Chinese)
    14 Wang Ling,Zhao Haofeng,Zhang Lu et al.Rare Metal Materials and Engineering[J],2011,40(S2):389(in Chinese)
    15 Wang Ping,Li Jianping,Guo Yongchun et al.Journal of University of Science and Technology Beijing[J],2011,33(9):1116(in Chinese)
    16 Zhang Shichang,Wei Bokang,Lin Hantong et al.The Chinese Journal of Nonferrous Metals[J],2001,11(S2):99(in Chinese)
    17 Dean J A.Lange’s Handbook of Chemistry,15th Ed[M].New York:McGraw-Hill Press,1999
    18 Robson J D,Henry D T,Davis B.Materials Science and Engineering A[J],2011,528(12):4239
    19 Zhu Chengcheng,Ma Aibin,Jiang Jinghua et al.The Chinese Journal of Nonferrous Metals[J],2013,23(5):1331(in Chinese)
    20 Li Xiao,Yang Ping,Li Jizhong et al.Chinese Journal of Materials Research[J],2010,24(1):1(in Chinese)
    21 Chen Dong,Ren Yuping,Guo Yun et al.Trans Nonferrous Met Soc China[J],2010,20(7):1321
    22 Park S S,Tang W N,You B S.Materials Letters[J],2010,64(1):31
    23 Kang Zhixin,Peng Yonghui,Kong Jing et al.Rare Metal Materials and Engineering[J],2012,41(2):215(in Chinese)
    24 KimW J,Hong S I,KimY S et al.Acta Materialia[J],2003,51(11):3293
    25 Wang Lifei,Mostaed Ehsan,Cao Xiaoqing et al.Materials&Design[J],2016,89:1

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700