高压静电场对玻璃纤维增强聚丙烯复合材料预浸料浸渍和断裂的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of high-voltage electrostatic field on impregnation and fiber fracture of continuous glass fiber reinforced polypropylene
  • 作者:任峰 ; 谢兴阳 ; 曹敏华 ; 李莹 ; 信春玲 ; 何亚东
  • 英文作者:REN Feng;XIE Xingyang;CAO Minhua;LI Ying;XIN Chunling;HE Yadong;College of Mechanical and Electrical Engineering,Beijing University of Chemical Technology;Taizhou Entry-Exit Inspection & Quarantine Berau;Polymer Processing Equipment Engineering Research Center,Ministry of Education;
  • 关键词:熔融浸渍 ; 高压静电场 ; 纤维断裂 ; 热塑性复合材料 ; 力学性能
  • 英文关键词:melt impregnation;;high-voltage electrostatic field;;fiber fracture;;thermoplastic composites;;mechanical property
  • 中文刊名:FUHE
  • 英文刊名:Acta Materiae Compositae Sinica
  • 机构:北京化工大学机电工程学院;台州检验检疫局;教育部高分子材料加工装备工程研究中心;
  • 出版日期:2017-10-27 17:08
  • 出版单位:复合材料学报
  • 年:2018
  • 期:v.35
  • 基金:国家重点研发计划“合成树脂高效制备关键技术”子项目(2016YFB0302005)
  • 语种:中文;
  • 页:FUHE201808008
  • 页数:9
  • CN:08
  • ISSN:11-1801/TB
  • 分类号:70-78
摘要
采用熔融浸渍工艺生产连续纤维增强热塑性树脂基复合材料,纤维预分散至关重要。结合现有机械分散装置,根据纤维束在高压静电场受静电场力的原理,设计并引入高压静电场分丝装置,对纤维束进行二次分散。结果显示,经过高压静电场分丝,促进了纤维束分散和纤维单丝之间的均匀性,改善了连续玻璃纤维增强聚丙烯(GF/PP)复合材料预浸料纤维和聚合物表面结合,降低了纤维分丝过程中的磨损和断裂,使通过此法制得的GF/PP复合材料预浸料的力学性能得到显著提升。实验表明,当静电场上下极板之间距离为20cm、高压静电场电压30kV时,GF/PP复合材料预浸料力学性能最优。
        The fiber pre-spreading is of great importance when the continuous fiber reinforced thermoplastic resin based composites are produced by the melt impregnation process.Based on existing mechanical dispersion device and the principle of the electrostatic field force,a high voltage electrostatic field spreading device for secondary dispersion was designed.The influence of electrostatic field voltage on the pre-spreading of fiber bundle was also investigated.The results show that,under a high voltage electrostatic field,the uniformity between the fiber bundle dispersion and the fiber monofilaments is promoted,and the mechanical properties of GF/PP are improved as well.Meanwhile,the surface and interface between fiber and polymer are improved,and the fracture of fiber bundle is reduced.The experimental results show that the mechanical properties of GF/PP prepreg are optimal when the distance between the top and bottom plates is 20 cm and the voltage of static field is 30 kV.
引文
[1]LUCAS P D.Composite materials research progress[M].New York:Nova Science Publishers Inc,2008:109-115.
    [2]益小苏,杜善义,张立同.复合材料手册[M].北京:化学工业出版社,2009,433-449.YI Xiaosu,DU Shanyi,ZHANG Litong.Composite material manual[M].Beijing:Chemical Industry Press,2009,433-449(in Chinese).
    [3]杜善义.先进复合材料与航空航天[J].复合材料学报,2007,24(1):1-12.DU Shanyi.Advanced composite materials and aerospace engineering[J].Acta Materiae Compositae Sinica,2007,24(1):1-12(in Chinese).
    [4]SATHISHKUMAR T P,SATHEESHKUMAR S,NAVEEN J.Glass fiber-reinforced polymer composites:A review[J].Journal of Reinforced Plastics and Composites,2014,33(13):1258-1275.
    [5]益小苏.先进复合材料技术研究与发展[M].第一版,北京:国防工业出版社,2006,48-63.YI Xiaosu.Research and development of advanced composite materials[M].First edtion,Beijing:National Defense Industry Press,2006,48-63(in Chinese).
    [6]钟文鑫,马丕波.高性能纤维束展纤技术的发展现状[J].玻璃钢/复合材料,2015(8):80-85.ZHONG Wenxin,MA Pibo.The development of expanding technology for high-performance yarn[J].Fiber Reinforced Plastics/Composites,2015(8):80-85(in Chinese).
    [7]COLE G S,SHERMAN A M.Light weight materials for automotive applications[J].Materials Characterization,1995,35(1):3-9.
    [8]邢丽英,包建文,礼嵩明,等.先进树脂基复合材料发展现状和面临的挑战[J].复合材料学报,2016,33(7):1327-1338.XING Liying,BAO Jianwen,LI Songming,et al.Development status and facing challenge of advanced polymer matrix composites[J].Acta Materiae Compositae Sinica,2016,33(7):1327-1338(in Chinese).
    [9]张庆.汽车用热塑性复合材料[J].轻型汽车技术,2014(7):57-59.ZHANG Qing.Automotive thermoplastic composites[J].Light Vehicles,2014(7):57-59(in Chinese).
    [10]MARISSEN R,DRIFT L T V D,STERK J.Technology for rapid impregnation of fibre bundles with a molten thermoplastic polymer[J].Composites Science and Technology,2000,60(10):2029-2034.
    [11]张翼鹏,颜春,阮春寅,等.原位聚合法制备连续玻璃纤维增强PCBT复合材料及其性能[J].复合材料学报,2012,29(4):29-35.ZHANG Yipeng,YAN Chun,RUAN Chunyin,et al.Preparation and properties of continuous fiber reinforced PCBT composites by in-situ polymerization[J].Acta Materiae Compositae Sinica,2012,29(4):29-35(in Chinese).
    [12]KOBAYASHI S,TANAKA A.Resin impregnation behavior in processing of unidirectional carbon fiber reinforced thermoplastic composites[J].Advanced composite materials,2012,21(1):91-102.
    [13]周晓东,张春光,潘伟,等.粉末浸渍长玻璃纤维增强聚丙烯的压缩模塑[J].复合材料学报,2003,20(2):19-24.ZHOU Xiaodong,ZHANG Chunguang,PAN Wei,et al.Compression molding of powder impregnating long glass fiber reinforced polypropylene[J].Acta Materiae Compositae Sinica,2003,20(2):19-24.(in Chinese)
    [14]IRFAN M S,MACHAVARAM V R,MAHENDRAN R S,et al.Lateral spreading of a fiber bundle via mechanical means[J].Journal of Composite Materials,2012,46(3):311-330.
    [15]ELDESSOUKY H M,LAWRENCE C A.Ultra-lightweight carbon fibre/thermoplastic composite material using spread tow technology[J].Composites Part B:Engineering,2013,50:91-97.
    [16]ROH J U,LEE W I.Continuous fiber tow spreading technologies and its applications[J].Composites Research,2013,26(3):155-159.
    [17]方振逵,益小苏,邹湘坪,等.连续纤维增强热塑性树脂基复合材料制备过程中纤维束分散分析[J].中国塑料,1998(2):42-48.FANG Zhenkui,YI Xiaosu,ZOU Xiangping,et al.The analysis of fiber bundles dispersion during preparing of continuous fiber reinforced thermoplastic composites[J].China Plastics,1998(2):42-48(in Chinese).
    [18]冯一川,傅增祥,曹兵妥,等.纤维束展开宽度的理论计算[J].科学技术与工程,2012,20(7):1489-1491.FENG Yichuan,FU Zengxiang,CAO Bingtuo,et al.Theoretical calculation of fibre bundle spreading width[J].Science Technology and Engineering,2012,20(7):1489-1491(in Chinese).
    [19]曹兵妥,傅增祥,刘风雷,等.多辊轴辅助高黏树脂熔融浸渍连续纤维工艺的影响因素[J].复合材料学报,2012,29(5):203-208.CAO Bingtuo,FU Zengxiang,LIU Fenglei,et al.Influence factors of high viscosity resin melt impregnation of continuous fiber in multi pins-assisted process[J].Acta Materiae Compositae Sinica,2012,29(5):203-208(in Chinese).
    [20]李华宙.连续碳纤维热塑性预浸带的制备机理及实验研究[D].上海:华东理工大学,2015.LI Huazhou.Manufacturing mechanism and experimental study on continuous carbon fiber reinforced thermoplastic towpreg tape[D].Shanghai:South China University of Technology,2015(in Chinese).
    [21]张丹丹,孙耀宁,王雅.多轴向玻璃纤维增强树脂基复合材料的破坏特性和损伤机制[J].复合材料学报,2017,34(2):381-388.ZHANG Dandan,SUN Yaoning,WANG Ya.Failure behavior and damage mechanism of multiaxial glass fiber reinforced resin matrix composites[J].Acta Materiae Compositae Sinica,2017,34(2):381-388(in Chinese).
    [22]张聪,信春玲,唐可,等.热塑性树脂连续浸渍过程的纤维断裂机制及实验[J].复合材料学报,2015,32(4):983-988.ZHANG Cong,XIN Chunling,TANG Ke,et al.Fiber fracture mechanism in process of thermoplastic resin continuous impregnation and experiments[J].Acta Materiae Compositae Sinica,2015,32(4):983-988(in Chinese).
    [23]方荀,任璞,沈春银,等.单向连续纤维和长纤维混杂增强聚丙烯力学性能研究[J].复合材料学报,2013,30(s1):124-127.FANG Xun,REN Pu,SHEN Chunyin,et al.Study on the mechanical properties of unidirectional continuous fiber and long fiber reinforced polypropylene hybrid composites[J].Acta Materiae Compositae Sinica,2013,30(s1):124-127(in Chinese).
    [24]金泽宇,信春玲,李莹,等.长纤维增强PA66复合材料熔融预浸过程的纤维断裂研究[J].北京化工大学学报(自然科学版),2016,43(6):56-62.JIN Zeyu,XIN Chunling,LI Ying,et al.A study of fiber fracture in the preimpregnation process for long fiber reinforced polyamide 66composites[J].Journal of Beijing University of Chemical Technology(Natural Science Edition),2016,43(6):56-62(in Chinese).
    [25]全国纤维增强塑料标准化技术委员会.纤维增强塑料吸水性试验方法:GB/T 1462—2005[S].北京:中国标准出版社,2005.National Technical Committee on Fiber Reinforced Plastic of Standardization Administration of China.Test methods for water absorption of fiber reinforced plastics:GB/T 1462—2005[S].Beijing:Standard Press of China,2005(in Chinese).
    [26]ASTM.Standard test method for short-beam strength of polymer matrix composite materials and their laminates:ASTM D2344[S].Philadelphia:ASTM,2013.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700