基于聚合短路比的大型风场次同步振荡风险初筛
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Risk screening of SSO induced in large-scale wind farms based on aggregated short circuit ratio
  • 作者:毕天姝 ; 李景一
  • 英文作者:BI Tianshu;LI Jingyi;State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources(North China Electric Power University);
  • 关键词:大型风场 ; 网架结构 ; 次同步振荡 ; 风险初筛 ; 聚合短路比
  • 英文关键词:large-scale wind farm;;grid structure;;SSO;;risk screening;;ASCR
  • 中文刊名:JDQW
  • 英文刊名:Power System Protection and Control
  • 机构:新能源电力系统国家重点实验室(华北电力大学);
  • 出版日期:2019-03-07 09:32
  • 出版单位:电力系统保护与控制
  • 年:2019
  • 期:v.47;No.527
  • 基金:国家重点研发计划资助(2017YFB0902004);; 国家自然科学基金项目资助(51725702);; 高等学校学科创新引智计划资助(B08013);; 国家电网公司科技项目资助(529926160002)~~
  • 语种:中文;
  • 页:JDQW201905007
  • 页数:8
  • CN:05
  • ISSN:41-1401/TM
  • 分类号:60-67
摘要
大型风场数量众多,逐一针对各风场进行精细化建模与次同步振荡风险分析,面临风场建模、参数获取及所需时间较长的问题。采用计算并网系统短路比的方法确定系统强度,用来对风场次同步振荡风险进行评估。基于常规短路比公式分析表明,该方法仅能考虑并网点处系统短路容量及风场容量,难以准确反应大型风场次同步振荡风险。由此,提出了一种计及多风场因素的聚合短路比计算方法,给出相应的计算公式。该计算方法能够反映风场网架情况、子风场交互作用以及控制系统对次同步振荡的影响。经过典型系统及实际系统算例分析,聚合短路比计算方法能够正确计算不同控制系统下风场次同步振荡风险,能够对具有不同拓扑结构的四个实际风场进行次同步振荡风险排序,验证了所提方法应用于风场次同步振荡风险初筛的可行性。
        There are so many large-scale wind farms, that detailed modeling and SSO risk analysis for each wind farm one by one will face the difficulty of wind farm modeling, parameter acquisition and longer time spending. The system strength is determined by calculating the Short-Circuit Ratio(SCR) of grid-connected system, which is used to evaluate the SSO risk of wind farm. Analysis based on conventional SCR formula shows that the method can only consider the short-circuit capacity and wind farm capacity at the grid-connected point, and it is difficult to accurately reflect the SSO risk of large-scale wind farm. A calculation method of Aggregate Short-Circuit Ratio(ASCR) is proposed, and the corresponding formula is given. The calculation method can reflect the influence of the factors on SSO, including the grid structure of wind farm, the interaction of sub-wind farms and the control system. Through analyzing the typical and practical system examples, the ASCR can correctly calculate the SSO risk of wind farm for different control systems, and rank the SSO risk of four actual wind farms with different topological structures, which verifies the effectiveness of the method on risk screening of wind farm SSO.
引文
[1]张超,王维庆,王海云,等.风火打捆外送系统220 kV电网次同步振荡监控策略研究[J].电力系统保护与控制,2018,46(11):138-144.ZHANG Chao,WANG Weiqing,WANG Haiyun,et al.Study on monitoring and control strategy of subsynchronous oscillation for 220 kV power grid in wind-thermal-bundled transmission system[J].Power System Protection and Control,2018,46(11):138-144.
    [2]刘革明,白杨,任祖怡,等.次同步振荡监测控制系统的研究与实现[J].电力系统保护与控制,2018,46(2):131-136.LIU Geming,BAI Yang,REN Zuyi,et al.Research and implementation on monitoring and controlling system of subsynchronous oscillation[J].Power System Protection and Control,2018,46(2):131-136.
    [3]李明节,于钊,许涛,等.新能源并网系统引发的复杂振荡问题及其对策研究[J].电网技术,2017,41(4):1035-1042.LI Mingjie,YU Zhao,XU Tao,et al.Study of complex oscillation caused by renewable energy integration and its solution[J].Power System Technology,2017,41(4):1035-1042.
    [4]高海翔,陈颖,许寅.双馈风机的电磁暂态平均化建模和快速仿真[J].广东电力,2017,30(2):59-64.GAO Haixiang,CHEN Ying,XU Yin.Averaged modeling and fast electromagnetic transient simulation for doubly-fed wind turbines[J].Guangdong Electric Power,2017,30(2):59-64.
    [5]NOURELDEEN O,HAMDAN I.Design of robust intelligent protection technique for large-scale grid-connected wind farm[J].Protection and Control of Modern Power Systems,2018,3(1):17-29.DOI:10.1186/s41601-018-0079-z.
    [6]DASH P K,PATNAIK R K,MISHRA S P.Adaptive fractional integral terminal sliding mode power control of UPFC in DFIG wind farm penetrated multimachine power system[J].Protection and Control of Modern Power Systems,2018,3(3):79-92.DOI:10.1186/s41601-018-0079-z.
    [7]张元,郝丽丽,戴嘉祺.风电场等值建模研究综述[J].电力系统保护与控制,2015,43(6):138-146.ZHANG Yuan,HAO Lili,DAI Jiaqi.Overview of the equivalent model research for wind farms[J].Power System Protection and Control,2015,43(6):138-146.
    [8]IEEE guide for planning DC links terminating at AClocations having low short-circuit capacities:IEEEstandard 1204-1997[S].
    [9]SHAO Y,TANG Y.Fast evaluation of commutation failure risk in multi-infeed HVDC systems[J].IEEETransactions on Power Systems,2018,33(1):646-653.
    [10]刘青,廖诗武,姚伟,等.计及并联电容器补偿的多馈入交直流系统改进有效短路比指标[J].电力系统保护与控制,2017,45(8):7-15.LIU Qing,LIAO Shiwu,YAO Wei,et al.An improved effective short circuit ratio of multi-infeed AC/DC power system considering shunt capacitors[J].Power System Protection and Control,2017,45(8):7-15.
    [11]杨燕,林勇,左郑敏,等.珠三角电网目标网架研究[J].广东电力,2017,30(12):62-69.YANG Yan,LIN Yong,ZUO Zhengmin,et al.Research on target framework of pearl river delta power grids[J].Guangdong Electric Power,2017,30(12):62-69.
    [12]龙志,杨柳,姚文峰.广东电网远景直流落点优化研究[J].电力系统保护与控制,2016,44(10):145-150.LONG Zhi,YANG Liu,YAO Wenfeng.Guangdong power grid DC placement optimization[J].Power System Protection and Control,2016,44(10):145-150.
    [13]CIGRE Working Group B4.41.Systems with multiple DC infeed[R].Paris,France:CIGRE,2008.
    [14]金小明,周保荣,管霖,等.多馈入直流交互影响强度的评估指标[J].电力系统自动化,2009,33(15):98-102.JIN Xiaoming,ZHOU Baorong,GUAN Lin,et al.HVDC-interaction-strength index for the multi-infeedHVDC power system[J].Automation of Electric Power Systems,2009,33(15):98-102.
    [15]邵瑶,汤涌.多馈入直流系统交互作用因子的影响因素分析[J].电网技术,2013,37(3):794-799.SHAO Yao,TANG Yong.Analysis of influencing factors of multi-infeed HVDC system interaction factor[J].Power System Technology,2013,37(3):794-799.
    [16]LEE D H A,ANDERSSON G.An equivalent singleinfeed model of multi-infeed HVDC systems for voltage and power stability analysis[J].IEEE Transactions on Power Delivery,2016,31(1):303-312.
    [17]李兆伟,翟海保,刘福锁,等.多馈入交直流混联受端电网直流接入能力研究评述[J].电力系统保护与控制,2016,44(8):142-148.LI Zhaowei,ZHAI Haibao,LIU Fusuo,et al.DC access capability study for multi-infeed HVDC power transmission system[J].Power System Protection and Control,2016,44(8):142-148.
    [18]HUANG Y,YUAN X,HU J,et al.Modeling of VSCconnected to weak grid for stability analysis of DC-link voltage control[J].IEEE Journal of Emerging and Selected Topics in Power Electronics,2015,3(4):1193-1204.
    [19]陈斐泓,杨健维,廖凯,等.基于频率扫描的双馈风电机组次同步控制相互作用分析[J].电力系统保护与控制,2017,45(24):84-91.CHEN Feihong,YANG Jianwei,LIAO Kai,et al.Sub-synchronous control interaction analysis in doubly-fed induction generator based on frequency scanning[J].Power System Protection and Control,2017,45(24):84-91.
    [20]王旭斌,杜文娟,王海风.开环模式谐振引发含变速风电机组电力系统振荡的机理分析[J].中国电机工程学报,2017,37(22):6481-6491.WANG Xubin,DU Wenjuan,WANG Haifeng.Oscillations caused by open-loop modal resonance in power system with variable-speed wind generator[J].Proceedings of the CSEE,2017,37(22):6481-6491.
    [21]CAO W,MA Y,YANG L,et al.D-Q impedance based stability analysis and parameter design of three-phase inverter-based AC power systems[J].IEEE Transactions on Industrial Electronics,2017,64(7):6017-6028.
    [22]白方周.多变量频域理论与设计技术[M].北京:国防工业出版社,1988.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700