枯草芽孢杆菌壳聚糖酶水解制备低脱乙酰度壳寡糖及其组分分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation and Composition Analysis of Chitooligosaccharides with Low Degree of Deacetylation by Hydrolysis of Bacillus subtilis Chitosanase
  • 作者:程功 ; 焦思明 ; 任立世 ; 冯翠 ; 杜昱光
  • 英文作者:CHENG Gong;JIAO Si-ming;REN Li-shi;FENG Cui;DU Yu-guang;State Key Laboratory of Biochemical Engineering,Institute of Process Engineering,Chinese Academy of Sciences;
  • 关键词:枯草芽孢杆菌 ; 壳聚糖酶 ; 毕赤酵母 ; 壳寡糖 ; UPLC-QTOF ; MS
  • 英文关键词:Bacillus subtilis;;Chitosanase;;Pichia pastoris;;Chitooligosaccharides;;Ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry
  • 中文刊名:SWGJ
  • 英文刊名:China Biotechnology
  • 机构:中国科学院过程工程研究所生化工程国家重点实验室;
  • 出版日期:2018-06-14 11:00
  • 出版单位:中国生物工程杂志
  • 年:2018
  • 期:v.38;No.318
  • 基金:国家重点研发计划(2016YFB0301502);; 国家自然科学基金联合基金(U1608255)资助项目
  • 语种:中文;
  • 页:SWGJ201809003
  • 页数:8
  • CN:09
  • ISSN:11-4816/Q
  • 分类号:25-32
摘要
对来源于枯草芽孢杆菌菌株168(Bacillus subtilis 168)的壳聚糖酶编码基因进行了序列优化及全合成,并在毕赤酵母(Pichia pastoris)中实现了分泌表达,表达产物的蛋白质浓度达到0.30mg/ml。表达的壳聚糖酶最适p H为5.6,最适温度为55℃,比酶活达84.54U/ml。该酶在50℃及以下较稳定。利用该酶水解低脱乙酰度壳聚糖并使用超高效液相色谱-四极杆飞行时间质谱(ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry,UPLC-QTOF MS)对产物的组分进行了分离及鉴定。根据一级质谱信息,推测酶解产物中包含至少37种聚合度2~18,不同脱乙酰度的壳寡糖组分。综上,利用毕赤酵母分泌表达了来源于枯草芽孢杆菌菌株168的壳聚糖酶基因,利用表达产物水解制备了低脱乙酰度壳寡糖并对其组分进行了分析,可为后续壳寡糖结构与功能关系的研究提供参考。
        Chitosanase encoding gene of Bacillus subtilis 168 was optimized,synthesized and secretorily expressed in Pichia pastoris. The protein concentration of the expressed product reached 0. 30 mg/ml. The optimum p H and temperature of the expressed chitosanase was 5. 6 and 55℃,respectively,and enzymatic activity reached 84. 54 U/ml. The chitosanase was continuously thermostable at 50℃. The low deacetylated chitosan was hydrolyzed by this enzyme and the composition of these products were analyzed through utraperformance liquid chromatography quadrupole time-of-flight mass spectrometry( UPLC-QTOF MS). The results showed that these hydrolysates contained at least 37 different kinds of chitooligosaccharides with degree of polymerization of 2-18 and different degree of deacetylation. In summary,chitooligosaccharides with low degree of deacetylation were prepared through Bacillus subtilis 168 chitosanase expressed in Pichia pastoris and its composition analyzed,which can provide a reference for the study of the relationship between the structure and function of chitooligosaccharides.
引文
[1]Lodhi G,Kim Y S,Hwang J W,et al.Chitooligosaccharide and its derivatives:preparation and biological applications.Biomed Research International,2014,2014(1):654913.
    [2]Zou P,Yang X,Wang J,et al.Advances in characterization and biological activities of chitosan and chitosan oligosaccharides.Food Chemistry,2016,190:1174-1181.
    [3]Azuma K,Osaki T,Minami S,et al.Anticancer and antiinflammatory properties of chitin and chitosan oligosaccharides.Journal of Functional Biomaterials,2015,6(1):33-49.
    [4]Shinya T,Nakagawa T,Kaku H,et al.Chitin-mediated plantfungal interactions:catching,hiding and handshaking.Current Opinion in Plant Biology,2015,26:64-71.
    [5]Je J Y,Kim S K.Chitooligosaccharides as potential nutraceuticals:production and bioactivities.Adv Food Nutr Res,2012,65:321-336.
    [6]Li K,Xing R,Liu S,et al.Advances in preparation,analysis and biological activities of single chitooligosaccharides.Carbohydrate Polymers,2016,139:178-190.
    [7]Younes I,Rinaudo M.Chitin and chitosan preparation from marine sources.structure,properties and applications.Marine Drugs,2015,13(3):1133-1174.
    [8]Jung W J,Park R D.Bioproduction of chitooligosaccharides:present and perspectives.Mar Drugs,2014,12(11):5328-5356.
    [9]Tegl G,Ohlknecht C,Vielnascher R,et al.Cellobiohydrolases produce different oligosaccharides from chitosan.Biomacromolecules,2016,17(6):2284-2292.
    [10]Ranok A,Wongsantichon J,Robinson R C,et al.High yield production of monomer-free chitosan oligosaccharides by pepsin catalyzed hydrolysis of a high deacetylation degree chitosan.Carbohydr Res,2007,342(18):2750-2756.
    [11]Lee D X,Xia W S,Zhang J L.Enzymatic preparation of chitooligosaccharides by commercial lipase.Food Chemistry,2008,111(2):291-295.
    [12]中科荣信(苏州)生物科技有限公司.一种里氏木霉几丁质酶及其制备方法和应用:中国,2017106305187.2017-07-28[2018-05-15].http://cpquery.sipo.gov.cn/txn Query Ordinary Patents.Zhongke Runxin(Suzhou)Biological Technology Co.Ltd.Preparation method and application of Trichoderma reesei chitinase:Chinese,2017106305187.2017-07-28[2018-05-15].http://cpquery.sipo.gov.cn/txn Query Ordinary Patents.
    [13]Borriss R,Danchin A,Harwood C R,et al.Bacillus subtilis,the model Gram-positive bacterium:20 years of annotation refinement.Microb Biotechnol,2018,11(1):3-17.
    [14]程功,任立世,焦思明,等.纤维素酶制备低脱乙酰度壳寡糖及其组成分析.食品科技,2018,43(4):189-193.Cheng G,Ren L S,Jiao S M,et al.Composition analysis and production of chito-oligosanccharides with low degree of deacetylation by cellulase.Food Sience and Technology,2018,43(4):189-193.
    [15]Parro V,SanRoman M,Galindo I,et al.A 23 911 bp region of the Bacillus subtilis genome comprising genes located upstream and downstream of the lev operon.Microbiology,1997,143:1321-1326.
    [16]Rivas L A,Parro V,Moreno-Paz M,et al.The Bacillus subtilis168 csn gene encodes a chitosanase with similar properties to a streptomyces enzyme.Microbiology,2000,146:2929-2936.
    [17]Pechsrichuang P,Yoohat K,Yamabhai M.Production of recombinant Bacillus subtilis chitosanase,suitable for biosynthesis of chitosan-oligosaccharides.Bioresour Technol,2013,127:407-414.
    [18]Kang L X,Chen X M,Fu L,et al.Recombinant expression of chitosanase from Bacillus subtilis HD145 in Pichia pastoris.Carbohydr Res,2012,352:37-43.
    [19]Feng J,Zhao L,Yu Q.Receptor-mediated stimulatory effect of oligochitosan in macrophages.Biochemical and Biophysical Research Communications,2004,317(2):414-420.
    [20]Han Y,Zhao L,Yu Z,et al.Role of mannose receptor in oligochitosan-mediated stimulation of macrophage function.International Immunopharmacology,2005,5(10):1533-1542.
    [21]Schimpl M,Rush C L,Betou M,et al.Human YKL-39 is a pseudo-chitinase with retained chitooligosaccharide-binding properties.Biochemical Journal,2012,446(1):149-157.
    [22]Ranok A,Wongsantichon J,Robinson R C,et al.Structural and thermodynamic insights into chitooligosaccharide binding to human cartilage chitinase 3-like protein 2(CHI3L2 or YKL-39).Journal of Biological Chemistry,2015,290(5):2617-2629.
    [23]Hayafune M,Berisio R,Marchetti R,et al.Chitin-induced activation of immune signaling by the rice receptor CEBi P relies on a unique sandwich-type dimerization.Proceedings of the National Academy of Sciences,2014,111(3):E404-E413.
    [24]Liu B,Li J F,Ao Y,et al.Lysin motif-containing proteins LYP4and LYP6 play dual roles in peptidoglycan and chitin perception in rice innate immunity.Plant Cell,2012,24(8):3406-3419.
    [25]Xu J,Wang G,Wang J,et al.The lysin motif-containing proteins,Lyp1,Lyk7 and Lys Me3,play important roles in chitin perception and defense against Verticillium dahliae in cotton.BMC Plant Biology,2017,17(1):148.
    [26]Liu T,Liu Z,Song C,et al.Chitin-induced dimerization activates a plant immune receptor.Science,2012,336(6085):1160-1164.
    [27]Winkler A J,Dominguez-Nunez J A,Aranaz I,et al.Short-chain chitin oligomers:promoters of plant growth.Mar Drugs,2017,15:40.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700