晶格匹配In_(0.17)Al_(0.83)N/GaN异质结电容散射机制
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Capacitance scattering mechanism in lattice-matched In_(0.17)Al_(0.83)N/GaN heterojunction Schottky diodes
  • 作者:任舰 ; 苏丽娜 ; 李文佳
  • 英文作者:Ren Jian;Su Li-Na;Li Wen-Jia;Department of Internet of Things,Huaiyin normal University;
  • 关键词:晶格匹配 ; In_(0.17)Al_(0.83)N/GaN异质结 ; 电容频率散射
  • 英文关键词:lattice-matched;;In_(0.17)Al_(0.83)N/GaN heterojunction;;frequency scattering mechanism of capacitance
  • 中文刊名:WLXB
  • 英文刊名:Acta Physica Sinica
  • 机构:淮阴师范学院物联网工程系;
  • 出版日期:2018-12-04 17:23
  • 出版单位:物理学报
  • 年:2018
  • 期:v.67
  • 基金:江苏省高校自然科学研究项目(批准号:17KJB510007,17KJB535001)资助的课题~~
  • 语种:中文;
  • 页:WLXB201824022
  • 页数:5
  • CN:24
  • ISSN:11-1958/O4
  • 分类号:212-216
摘要
制备了晶格匹配In_(0.17)Al_(0.83)N/GaN异质结圆形平面结构肖特基二极管,通过测试和拟合器件的电容-频率曲线,研究了电容的频率散射机制.结果表明:在频率高于200 kHz后,积累区电容随频率出现增加现象,而传统的电容模型无法解释该现象.通过考虑漏电流、界面态和串联电阻等影响对传统模型进行修正,修正后的电容频率散射模型与实验结果很好地符合,表明晶格匹配In_(0.17)Al_(0.83)N/GaN异质结电容随频率散射是漏电流、界面态和串联电阻共同作用的结果.
        In order to study the frequency scattering mechanism of capacitance in latticematched Ino.17 Al_(0.83)N/GaN high electron mobility transistors(HEMTs), the latticematched In_(0.17)Al_(0.83)N/GaN heterojunction Schottky diodes with circular planar structure, which have equivalent capacitance characteristics to those of HEMTs, are fabricated and tested in this paper. The experimental curves of capacitance-voltage characteristics at different frequencies show that the capacitance of the accumulation area decreases gradually with the increase of frequency at low frequency, which accords with the capacitance frequency scattering characteristics of traditional HEMT devices. However, when the frequency is higher than 200 kHz, the capacitance of the accumulation area increases rapidly with frequency increasing, which cannot be explained by the traditional capacitance model. By comparing the reverse current and capacitance characteristics of latticematched In_(0.17)Al_(0.83)N/GaN Schottky diodes, it is observed that the saturation behavior of the reverse leakage current is clearly associated with full depletion of the two-dimensional electron gas at the InAlN/GaN interface, which is indicated by the rapid drop of the diode capacitance. This observation suggests that the large reverse leakage current of the lattice-matched Ino.17 Al_(0.83)N/GaN Schottky diode, which reaches up to 10-4 A, should has a direct influence on the capacitance scattering. By considering the influence of leakage current, interface state and series resistance comprehensively, the capacitance frequency scattering model is modified based on the traditional model. Using various models to fit the experimental capacitance-frequency data, the results from the modified model agree well with the experimental results. According to the parameters obtained by fitting, the density and the time constant of interface defects in latticematched Ino.17 Al_(0.83)N/GaN Schottky diodes, determined by equivalent interface capacitance and resistance, are about 1.66 x 10~(10) cm~(-2)·eV~(-1) and 2.65 μs, respectively. According to the values reported in the literature, it is suggested that the modified capacitance frequency scattering model should be reasonable for explaining the capacitance scattering phenomenon in accumulation area. In conclusion, we believe that the capacitance of latticematched In_(0.17)Al_(0.83)N/GaN Schottky diode scatters is a joint result of leakage current, interface state and series resistance. The interface defects in In_(0.17)Al_(0.83)N/GaN Schottky diodes usually have a great influence on frequency and power characteristics of devices, a correct explanation for the frequency scattering mechanism of capacitance is the basis for determining the locations and sources of defects in III nitride devices.
引文
[1]Wang C, Zhao M D, Pei J Q, He Y L, Li X D, Zheng X F, Mao W, Ma X H, Zhang J C, Hao Y 2016 Acta Phys.Sin. 65 038501(in Chinese)[王冲,赵梦荻,裴九清,何云龙,李祥东,郑雪峰,毛维,马晓华,张进成,郝跃2016物理学报65 038501]
    [2]Li S P, Zhang Z L, Fu K, Yu G H, Cai Y, Zhang B S2017 Acta Phys. Sin. 66 197301(in Chinese)[李淑萍,张志利,付凯,于国浩,蔡勇,张宝顺2017物理学报66197301]
    [3]Sun M, Zhang Y, Gao X, Tomas P 2017 IEEE Electron Dev. Lett. 38 509
    [4]Xue J S, Hao Y, Zhang J C, Zhou X W, Liu Z Y 2011Appl. Phys. Lett. 98 113504
    [5]Li Q, Chen Q, Zhong J 2018 Acta Phys. Sin. 67 027303(in Chinese)[李群,陈谦,种景2018物理学报67 027303]
    [6]Xing W, Liu Z, Ranjan K, Tomas P 2018 IEEE Electron Dev. Lett. 39 947
    [7]Kuzmik J, Pozzovivo G, Abermann S, Carlin J F, Gonschorek M, Feltin E 2008 IEEE Trans. Electron Dev. 55937
    [8]Chung J W, Saadat O I, Tirado J M, Gao X 2009 IEEE Electron Dev. Lett. 30 904
    [9]Li W, Wang Q, Zhan X 2016 Semicond. Sci. Technol.31 125003
    [10]Yuan Y, Wang L, Yu B, Shin B, Ahn J, Mcintyre P C2011 IEEE Electron Dev. Lett. 32 485
    [11]Lin H C, Yang T, Sharifi H, Kin S K, Xuan Y 2007 Appl.Phys. Lett. 91 212101
    [12]Stemmer S, Chobpattana V, Rajan S 2012 Appl. Phys.Lett. 100 233510
    [13]Zhao J Z, Lin Z J, Corrigan T D, Wang Z, You Z D,Wang Z G 2007 Appl. Phys. Lett. 91 173507
    [14]Stoklas R, Gregusova D, Novak J, Vescan A, Kordos P2008 Appl. Phys. Lett. 93 124103
    [15]Xie S, Yin J, Zhang S, Liu B, Zhou W, Feng Z 2009Solid-State Electron. 53 1183
    [16]Shealy J R, Brown R J 2008 Appl. Phys. Lett. 92 032101
    [17]Miller E J, Dang X Z, Wieder H H, Asbeck P M, Yu E T, Sullivan G J 2000 J. Appl. Phys. 87 8070
    [18]Yang K J, Hu C 1999 IEEE Trans. Electron Dev. 461500
    [19]Taruvekere S, Karumuri N, Rahman A A 2013 IEEE Trans. Electron Dev. 60 3157
    [20]Nsele S D, Escotte L, Tartarin J, Piotrowicz S, Delage S L 2013 IEEE Trans. Electron Dev. 60 1372
    [21]Semra L, Telia A, Soltani A 2010 Surf. Interface Anal.42 799

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700