美国陆军PNT能力发展趋势分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Analysis of the Development Trends of US Army PNT Capability
  • 作者:葛悦涛 ; 薛连莉 ; 李婕敏
  • 英文作者:GE Yue-tao;XUE Lian-li;LI Jie-min;Beijing HIWING Scientific and Technological Information Institute;China Industrial Control Systems Cyber Emergency Response Team;
  • 关键词:美国陆军 ; 全球定位系统 ; 导航 ; 定位 ; 授时
  • 英文关键词:US Army;;GPS;;Navigation;;Positioning;;Timing
  • 中文刊名:DWSS
  • 英文刊名:Navigation Positioning and Timing
  • 机构:北京海鹰科技情报研究所;国家工业信息安全发展研究中心;
  • 出版日期:2019-03-12 08:55
  • 出版单位:导航定位与授时
  • 年:2019
  • 期:v.6;No.29
  • 语种:中文;
  • 页:DWSS201902003
  • 页数:7
  • CN:02
  • ISSN:10-1226/V
  • 分类号:16-22
摘要
针对当前全球定位系统(GPS)易受干扰和攻击的影响,定位、导航与授时(PNT)系统需灵活应对多种复杂战场环境。分析了美国陆军未来发展先进PNT技术的背景,重点分析了美国陆军PNT能力的发展趋势,其中主要包括了伪卫星系统、车辆导航系统、惯性导航、定位、导航系统辅助传感器、导航传感器融合、导航仿生技术、授时、PNT建模与仿真、导航战技术应用、自主与人工智能在PNT中的应用等11个方面的发展趋势。最后给出了简要总结,认为美陆军将注重改进单兵和车辆态势感知能力,以提高未来支持战场指挥官的任务指挥和决策能力,同时重点关注了开放式系统架构、SWaP-C优化、自主技术和人工智能技术,以提升PNT的整体能力。
        Because of the vulnerability of GPS, PNT system needs to deal with a variety of complex battlefield environments flexibly. Based on this, the background of the US Army's future development of advanced PNT technology was analyzed, and then focused on the development trends of the US Army's PNT capabilities, including pseudo-satellite system, vehicle navigation system, inertial navigation, positioning, auxiliary sensor of navigation system, navigation sensor fusion, navigation bionic technology, timing, PNT modeling and simulation, application of navigation warfare technology, the application of autonomous and artificial intelligence in PNT, etc. Finally, the development trends of the US Army PNT capability were summarized. It believed that the US Army will focus on improving the soldiers and vehicles situational awareness and supporting to mission command and decision enhancing technologies, At the same time focuses on open system architecture, SWaP-C optimization, autonomous technology, and artificial intelligence tech-nologies to enhance PNT overall ability.
引文
[1] Kym Gilhooly. Defense department moves to augment GPS with alternatives[DB/OL].[2018-05-11]. https://fedtechmagazine.com/article/2018/05/defense-department-moves-augment-gps-alternatives.
    [2] 葛悦涛, 薛连莉, 李婕敏. 美国空军授时战概念分析[J]. 飞航导弹, 2018, 1(5): 11-14. Ge Yuetao, Xue Lianli, Li Jiemin. Study on the concept of time war in the US air force[J]. Aerodynamic Missile Journal, 2018, 1(5): 11-14(in Chinese).
    [3] 郑辛, 杨林. 导航、定位与授时技术综述[J]. 导航定位与授时, 2014, 1(1): 1-7. Zheng Xin, Yang Lin. Survey on navigation, positioning and timing technology[J]. Navigation Positioning and Timing, 2014, 1(1): 1-7(in Chinese).
    [4] 武成锋, 彭元, 何子君,等. 卫星导航干扰与抗干扰技术综述[J]. 导航定位与授时, 2014, 1(2): 59-63. Wu Chengfeng, Peng Yuan, He Zijun, et al. The review of GNSS jamming and anti-jamming technology[J]. Navigation Positioning and Timing, 2014, 1(2): 59-63(in Chinese).
    [5] 赵爽. 国外卫星导航系统现状与发展趋势分析[J]. 国际太空, 2014(4): 18-22. Zhao Shuang. Analysis on the present situation and development trend of satellite navigation systems abroad[J]. International Space, 2014(4): 18-22(in Chinese).
    [6] Department of the Army. Positioning, navigation and timing[DB/OL].[2017-11-24].https://www.fbo.gov/index?s=opportunity&mode=form&id=d96b0280ab-a88d75a0e e576307885345&tab=core&_cview=0.
    [7] 于洋. 美国陆军定位导航与授时技术发展分析[J]. 卫星应用, 2015(12): 32-33. Yu Yang. Analysis of the development of US army positioning, navigation and timing technology[J]. Satellite Applications, 2015 (12): 32-33(in Chinese).
    [8] Delange J, Frick S, Runnels J, et al. Sensor for small satellite relative PNT in deep-space[C]// 2016 IEEE/ION Position, Location and Navigation Symposium (PLANS). Savannah, GA,2016: 955-963.
    [9] 肖霞. 美国DARPA拟研发新项目以替代GPS[J]. 电子对抗, 2014(4): 23-23. Xiao Xia. DARPA to develop alternative to GPS[J]. Electronic Countermeasures, 2014(4):23-23(in Chinese).
    [10] 王璐菲, 李方. 美国欲创建水下GPS系统[J]. 防务视点, 2015(8): 62-62. Wang Lufei, Li Fang. US to create underwater GPS system[J]. Defense Viewpoint, 2015(8): 62-62(in Chinese).
    [11] Teufel J D, Donner T, Li D, et al. Sideband cooling of micromechanical motion to the quantum ground state[J]. Nature, 2011, 475(7356): 359-363.
    [12] Vitan V, Berz G, Solomina N. Assessment of current DME performance and the potential to support a future A-PNT solution[C]// 2015 IEEE/AIAA 34th Digital Avionics Systems Conference (DASC). IEEE, 2015: 2A2-1-2A2-18.
    [13] 康国栋. 伪卫星定位系统研究[D]. 西安: 西北工业大学, 2006. Kang Guodong. Research on pseudolite positioning sys-tem[D]. Xi'an: Northwest Polytechnic University, 2006(in Chinese).
    [14] 宋建材. GNSS/伪卫星组合导航技术研究[D]. 天津: 天津大学, 2017: 10-20. Song Jiancai. Research on GNSS/ pseudolite integ-rated navigation technology[D]. Tianjin: Tianjin University, 2017: 10-20(in Chinese).
    [15] Lu Y, Xue Z, Xia G S, et al. A survey on vision-based UAV navigation[J]. Geo-spatial Information Science, 2018:1-12.
    [16] Antonov D A, Veremeenko K K, Zharkov M V, et al. Fault-tolerant airport vehicle integrated navigation system[C]// 2017 24th Saint Petersburg International Conference on Integrated Navigation Systems(ICINS). St. Petersburg, Russia. IEEE, 2017: 1-4.
    [17] 刘蔚, 康永. 一种导航新技术:协作机会导航[J]. 现代导航, 2015(1): 71-75. Liu Wei, Kang Yong. A new navigation technology: collaborative opportunity navigation[J]. Modern Navigation, 2015(1): 71-75(in Chinese).
    [18] Kartal S K, Leblebicio navigation and system identification of underwater survey vehicle[C]// 2015 23th Signal Processing and Communications Applications Conference(SIU). Malatya, Turkey. IEEE, 2015: 759-762.
    [19] Kim Y, Hwang D H. Design of vision/INS integ-rated navigation system in poor vision navigation environments[C]// 2013 13th International Conference on Control, Automation and Systems(ICCAS). Gwan-gju, South Korea. IEEE, 2013: 531-535.
    [20] Purwanto D, Rivai M, Soebhakti H. Vision-based multi-point sensing for corridor navigation of autonomous indoor vehicle[C]// 2017 International Conference on Electrical Engineering and Computer Science(ICECOS). Palembang, Indonesia. IEEE, 2017: 67-70.
    [21] Ng Y, Gao G X. Joint GPS and vision direct position estimation[C]// 2016 IEEE/ION Position, Location and Navigation Symposium(PLANS). Savannah, GA. IEEE, 2016: 380-385.
    [22] Hardy J, Strader J, Gross J N, et al. Unmanned aerial vehicle relative navigation in GPS denied environments[C]// 2016 IEEE/ION Position, Location and Navigation Symposium(PLANS). Savannah, GA. IEEE, 2016: 344-352.
    [23] Thompson B, Newborn C, Jackson P, et al. Low cost, standard-based EO/IR payload simulation for visual aided navigation applications[C]// 2018 IEEE/ION Position, Location and Navigation Symposium (PLANS). Monterey, CA. IEEE, 2018: 447-455.
    [24] Fernández N G, Sch?n S. Development of a simula-tion tool for collaborative navigation systems[C]// 2017 14th Workshop on Positioning, Navigation and Communications(WPNC). Bremen, German. IEEE, 2017: 1-6.
    [25] 范晨, 胡小平, 何晓峰, 等. 仿生偏振光导航研究综述[C]// 中国惯性技术学会学术年会, 2015. Fan Chen, Hu Xiaoping, He Xiaofeng, et al. A review of biomimetic polarized light navigation[C]// Annual Meeting of Chinese Society of Inertial Technology, 2015(in Chinese).
    [26] 张文. 基于多传感器融合的室内机器人自主导航方法研究[D]. 合肥: 中国科学技术大学, 2017. Zhang Wen. Research on autonomous navigation method of indoor robot based on multi-sensor fusion [D]. Hefei: University of Science and Technology of China, 2017(in Chinese).
    [27] Closas P, Luise M, Avila-Rodriguez J A, et al. Advances in Signal Processing for GNSSs [From the Guest Editors][J]. IEEE Signal Processing Magazine, 2017, 34(5): 12-15.
    [28] Guo J, Du J, Xu D. Navigation and Positioning System Applied in Underground Driverless Vehicle Based on IMU[C]//2018 International Conference on Robots & Intelligent System (ICRIS). Changsha, China. IEEE, 2018: 13-16.
    [29] Grewal H S, Jayaprakash N T, Matthews A, et al. Autonomous wheelchair navigation in unmapped indoor environments[C]//2018 IEEE International Instrumentation and Measurement Technology Conference (I2MTC). Houston, TX. IEEE, 2018: 1-6.
    [30] Zhao Y, Yang Z, Song C, et al. Vehicle dynamic model-based integrated navigation system for land vehicles[C]//2018 25th Saint Petersburg International Confe-rence on Integrated Navigation Systems (ICINS). Saint Petersburg, Russia. IEEE, 2018: 1-4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700