羧甲基纤维素钠对纳米Fe_3O_4在石英砂中迁移的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influence of Carboxymethyl Cellulose on Transport of Magnetite Nanoparticles in Quartz Sand
  • 作者:钟华 ; 崔朋 ; 董浩然 ; 张俊涛 ; 张丽娜 ; 田亚灵 ; 曾光明
  • 英文作者:ZHONG Hua;CUI Peng;DONG Haoran;ZHANG Juntao;ZHANG Lina;TIAN Yaling;ZENG Guangming;College of Environmental Science and Engineering,Hunan University;Key Laboratory of Environmental Biology and Pollution Control(Hunan University),Ministry of Education;
  • 关键词:纳米四氧化三铁 ; 羧基纤维素钠 ; 多孔介质 ; 稳定性 ; 迁移
  • 英文关键词:magnetite nanoparticles;;carboxymethyl cellulose;;porous media;;stability;;transport
  • 中文刊名:HNDX
  • 英文刊名:Journal of Hunan University(Natural Sciences)
  • 机构:湖南大学环境科学与工程学院;环境生物与控制教育部重点实验室(湖南大学);
  • 出版日期:2017-12-25
  • 出版单位:湖南大学学报(自然科学版)
  • 年:2017
  • 期:v.44;No.288
  • 基金:国家自然科学基金青年基金资助项目(51409100);国家自然科学基金资助项目(51378192)~~
  • 语种:中文;
  • 页:HNDX201712019
  • 页数:6
  • CN:12
  • ISSN:43-1061/N
  • 分类号:126-131
摘要
为提高纳米四氧化三铁(MNPs)在悬浊液中的稳定性,强化其在多孔介质中的迁移能力,实验选用羧甲基纤维素钠(CMC)修饰MNPs,通过zeta电位、颗粒粒径和沉降曲线的变化考察了修饰前后的MNPs在模拟地下水溶液中的稳定性,并通过一维柱实验考察了修饰前后的MNPs在石英砂介质中的迁移性能.结果表明:由于CMC对MNPs的修饰增大了MNPs表面的负电荷电量,有效抑制了MNPs的团聚,从而使得MNPs在CMC溶液中的稳定性远高于其在背景模拟地下水溶液的稳定性,相应作用也使得CMC修饰下的MNPs在石英砂介质中的迁移性能大大增强.
        In order to increase the stability of magnetite nanoparticles(MNPs)in suspensions and enhance their transport in the porous media,carboxymethyl cellulose(CMC)was used to modify MNPs.Batch experiments were conducted to investigate the stability of bare MNPs and CMC-modified MNPs in the artificial groundwater(AGW).Influence of CMC on MNPs transport in the quartz sand was also studied by using 1-D column experiments.The increase of surface charge due to CMC modification inhibited agglomeration of MNPs,and thus increased the stability of MNPs in the CMC solution.Such effects also greatly promoted the transport of MNPs in the quartz sand.
引文
[1]KONG S H,WATTS R J,CHOI J H.Treatment of petroleumcontaminated soils using iron mineral catalyzed hydrogen peroxide[J].Chemosphere,1998,37(8):1473-1482.
    [2]LIANG Qiqi,ZHAO Dongye.Immobilization of arsenate in a sandy loam soil using starch-stabilized magnetite nanoparticles[J].J Hazard Mater,2014,271:16-23.
    [3]PAN Gang,LI Lei,ZHAO Dongye,et al.Immobilization of non-point phosphorus using stabilized magnetite nanoparticles with enhanced transportability and reactivity in soils[J].Environ Pollut,2010,158(1):35-40.
    [4]DING Dahu,LIU Chao,JI Yuefei,et al.Mechanism insight of degradation of norfloxacin by magnetite nanoparticles activated persulfate:Identification of radicals and degradation pathway[J].Chemical Engineering Journal,2017,308:330-339.
    [5]BEN-MOSHE T,DRROR I,BERKOWITZ B.Transport of metal oxide nanoparticles in saturated porous media[J].Chemosphere,2010,81(3):387-393.
    [6]LI Xiaoqin,ELLIOTT D W,ZHANG Weixian.Zero-valent iron nanoparticles for abatement of environmental pollutants:materials and engineering aspects[J].Critical Reviews in Solid State and Materials Sciences,2006,31(4):111-122.
    [7]杨麒,伍秀琼,钟宇,等.活性炭负载纳米零价铁去除溴酸盐的研究[J].湖南大学学报:自然科学版,2013,40(12):97-102.YANG Qi,WU Xiuqiong,ZHONG Yu,et al.Removal of bromate using nanoscale zero-valent iron supported on activated carbon[J].Journal of Hunan University:Natural Sciences,2013,40(12):97-102.(In Chinese)
    [8]HU J D,ZEVI Y,KOU X M,et al.Effect of dissolved organic matter on the stability of magnetite nanoparticles under different pH and ionic strength conditions[J].Sci Total Environ,2010,408(16):3477-3489.
    [9]ERSENKAL D A,ZIYLAN A,INCE N H,et al.Impact of dilution on the transport of poly(acrylic acid)supported magnetite nanoparticles in porous media[J].J Contam Hydrol,2011,126(3/4):248-257.
    [10]KEYHANIAN F,SHARIATI S,FARAJI M,et al.Magnetite nanoparticles with surface modification for removal of methyl violet from aqueous solutions[J].Arabian Journal of Chemistry,2016,9:S348-S354.
    [11]MACCARINI M,ATREI A,INNOCENTI C,et al.Interactions at the CMC/magnetite interface:Implications for the stability of aqueous dispersions and the magnetic properties of magnetite nanoparticles[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2014,462:107-114.
    [12]LI Jing,BHATTACHARJEE S,GHOSHAL S.The effects of viscosity of carboxymethyl cellulose on aggregation and transport of nanoscale zerovalent iron[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2015,481:451-459.
    [13]HE Feng,ZHAO Dongye,LIU Juncheng,et al.Stabilization of Fe-Pd nanoparticles with sodium carboxymethyl cellulose for enhanced transport and dechlorination of trichloroethylene in soil and groundwater[J].Industrial&Engineering Chemistry Research,2007,46(1):29-34.
    [14]BAI Guiyun,BRUSSEAU M L,MILLER R M.Influence of a rhamnolipid biosurfactant on the transport of bacteria through a sandy soil[J].Applied and Environmental Microbiology,1997,63(5):1866-1873.
    [15]RAYCHOUDHURY T,TUFENKJI N,GHOSHAL S.Aggregation and deposition kinetics of carboxymethyl cellulose-modified zero-valent iron nanoparticles in porous media[J].Water Res,2012,46(6):1735-44.
    [16]陆海燕,宋美,史卫东,等.蒽酮光度法测定羧甲基纤维素钠[J].天津科技大学学报,1996,11(2):86-88.LU Haiyan,SONG Mei,SHI Weidong,et al.Determination of carboxymethyl cellulose by spectrophotometric analysis of anthrone coloration[J].Journal of Tianjin Institute of Light Industry,1996,11(2):86-88.(In Chinese)
    [17]余健,赵令晖,唐浩,等.In2S3-Ag/TiO2三元纳米体系光催化降解2,4-D的实验研究[J].湖南大学学报:自然科学版,2015,42(12):107-114.YU Jian,ZHAO Linghui,TANG Hao,et al.The investigation of photodegradation of 2,4-D by the three-component system In2S3-Ag/TiO2nanotube arrays[J].Journal of Hunan University:Natural Sciences,2015,42(12):107-114.(In Chinese)
    [18]MELENDREZ M F,CARDENAS G,Arbiol J.Synthesis and characterization of gallium colloidal nanoparticles[J].Journal of Colloid&Interface Science,2010,346(2):279-287.
    [19]ZHONG Hua,YANG Xin,TAN Fei,et al.Aggregate-based sub-CMC solubilization of n-Alkanes by monorhamnolipid biosurfactant[J].New J Chem,2016,40(3):2028-2035.
    [20]殷其亮,李筱琴,李瑛,等.羧甲基纤维素钠改性零价铁在石英砂中的迁移能力[J].化工进展,2013,32(7):1598-1603.YIN Qiliang,LI Xiaoqin,LI Ying,et al.Transport of CMC modified zero-valent iron particles in quartz sand[J].Chemical Industry and Engineering Progress,2013,32(7):1598-1603.(In Chinese)
    [21]HE Feng,ZHAO Dongye.Manipulating the size and dispersibility of zerovalent iron nanoparticles by use of carboxymethyl cellulose stabilizers[J].Environmental Science&Technology,2007,41(17):6216-6221.
    [22]BRAIN L,CUSHING V,CHARLES J.Recent advances in the liquid-phase syntheses of inorganic nanoparticles[J].Chem Rev,2004,104:3893-3946.
    [23]PHENRAT T,SALEH N,SIRK K,et al.Stabilization of aqueous nanoscale zerovalent iron dispersions by anionic polyelectrolytes:adsorbed anionic polyelectrolyte layer properties and their effect on aggregation and sedimentation[J].Journal of Nanoparticle Research,2008,10(5):795-814.
    [24]YUKSELEN A Y,KAYA A.A study of factors affecting on the zeta potential of kaolinite and quartz powder[J].Environmental Earth Sciences,2011,62(4):697-705.
    [25]LIU Guansheng,ZHONG Hua,JIANG Yongbing,et al.Effect of low-concentration rhamnolipid biosurfactant on pseudomonas aeruginosa transport in natural porous media[J].Water Resources Research,2017,53:1-14.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700