能源富集区土壤重金属污染与生态安全研究——以陕北为例
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on Soil Heavy Metal Pollution and Ecological Security in Energy-enriched Areas: A Case Study of Northern Shaanxi, China
  • 作者:段艺芳 ; 任志远 ; 张翀 ; 孙艺杰
  • 英文作者:DUAN Yifang;REN Zhiyuan;ZHANG Chong;SUN Yijie;College of Geography and Tourism, Shaanxi Normal University;College of Environment and Planning, Liaocheng University;Shaanxi Key Laboratory of Disaster Monitoring and Mechanism Modeling, Baoji University of Arts and Sciences;
  • 关键词:生态安全 ; 指示克里格 ; 土壤重金属 ; 生态热点 ; 陕北
  • 英文关键词:ecological security;;indicator Kriging;;soil heavy metals;;ecological hotspots;;northern Shaanxi
  • 中文刊名:TRYJ
  • 英文刊名:Ecology and Environmental Sciences
  • 机构:陕西师范大学地理科学与旅游学院;聊城大学环境与规划学院;宝鸡文理学院陕西省灾害监测与机理模拟重点实验室;
  • 出版日期:2018-09-18
  • 出版单位:生态环境学报
  • 年:2018
  • 期:v.27
  • 基金:国家自然科学基金项目(41371523)
  • 语种:中文;
  • 页:TRYJ201809023
  • 页数:10
  • CN:09
  • ISSN:44-1661/X
  • 分类号:178-187
摘要
基于构建的生态安全指标体系和表层土壤样点数据,运用模糊综合评价法和指示克里格法进行生态安全评价和土壤重金属风险评估,结合宏观层面的生态安全评价和微观层面的土壤重金属风险评价划定了陕北生态热点区,提取出应对土壤重金属污染的优先保护区域,旨在明晰陕北能源区内生态安全状况以及土壤重金属生态风险情况,为该区土壤重金属污染控制和土壤保护与修复提供依据。结果表明,20世纪80年代以来的20余年间,陕北地区土地生态系统整体处于临界安全状态,其中西北部等级最低,南部等级最高,而能源开采区中只有煤炭典型开采Ⅱ区处于中度安全级别,其余各能源区均处于临界安全状态。各种重金属生态风险在空间上均表现出由南向北、由东南向西北逐渐增加的分布特点。陕北土壤重金属受能源开采影响明显,3类能源开采对土壤重金属影响的程度表现为天然气>煤炭>石油。陕北地区生态热点区中的高热区主要分布在黄陵县、黄龙县中南部和富县西北部;而中低热区主要分布在延安地区中部以南区域。陕北地区应对重金属污染的优先保护区域为延安地区中部的中—低热点区的过渡区以及洛川县。对于能源开采区而言,煤炭开采Ⅱ区及其10 km缓冲区也可划定为应对重金属污染的优先保护区,但该保护区内的土壤重金属综合潜在风险指数已接近生态危害较强等级,因此,应适当加强生态环境的保护和修复,使该区的生态环境保持可持续性。
        Based on the Pressure-State-Response Model index system and surface soils samples, using fuzzy comprehensive evaluation and indicator Kriging, the land ecological security and potential risks based on soil heavy metals in northern Shaanxi were evaluated, and the ecological hotspots in northern Shaanxi were determined by combining macro and micro indices. Then the priority protection zones for dealing with soil heavy metal pollution were designated, in order to clarify the ecological safety status and the ecological risk of heavy metals and provide the basis for the soil heavy metal pollution control and soil conservation and restoration in the Northern Shaanxi energy-enriched areas. Results were as follows: From the 1980 s to the 2000 s, the ecological security in northern Shaanxi was at a critical safety level overall. The ecological security was at the lowest level in the northwest of this region, but was high in the south. Among the three kinds of energy exploitation regions, only the second mine exploitation region was moderately safe, while the others were at the critical safety level. Spatially, the ecological risk of various heavy metals tended to increase gradually from south to north and from southeast to northeast. Heavy metals in soils were influenced mainly by energy exploitation, and the comprehensive potential risks of soil heavy metals in energy exploitation regions were in the following order: gas>coal>oil. The regions with high ecological hotspots were mainly distributed in Huangling County, south central Huanglong County, and northwest of Fuxian County; and the regions with medium or low hotspots were mainly distributed in the south central Yan'an Region. For northern Shaanxi, the priority zones for protection from heavy metal pollution were distributed in the central Yan'an Region, with medium-low hotspots, and in Luochuan County. Regarding the exploitation regions, the coal miningⅡregion and its surroundings were designated priority protection zones, but the comprehensive potential risks from soil heavy metals in this region were close to the stronger level of ecological harm. Therefore, ecological environment protection and restoration of the coal miningⅡregion and its surroundings should be increased to allow the ecological environment of this region to maintain its sustainability.
引文
BRUS D J,GRUIJTER J J,WALVOORT D J,et al.2002.Mapping the probability of exceeding critical thresholds for cadmium concentrations in soils in the Netherlands[J].Journal of Environmental Quality,31:1875-1884.
    GOOVAERTS P.1997.Geostatistics for Natural Resources Evaluation[M].New York:Oxford University Press:158-169.
    LV J S,LIU Y,ZHANG Z L,et al.2013.Factorial Kriging and stepwise regression approach to identify environmental factors influencing spatial multi-scale variability of heavy metals in soils[J].Journal of Hazardous Materials,261:387-397.
    MARTíN J A R,RAMOS-MIRAS J J,BOLUDA R,et al.2013.Spatial relations of heavy metals in arable and greenhouse soils of a Mediterranean environment region(Spain)[J].Geoderma,200-201:180-188.
    SAJN R,HALAMIC J,PEH Z et al.2011.Assessment of the natural and anthropogenic sources of chemical elements in alluvial soils from the Drava River using multivariate statistical methods[J].Journal of Geochemical Exploration,110(3):278-289.
    WEI X F,LIU Y X,LIANG H X,et al.2016.Application of Biotechnology in Environmental Remediation of Mining Area[J].Agricultural Science&Technology,17(7):1714-1717.
    ZHAO R X,GUO W,SUN W H.2012.Assessment of Heavy Metal Contamination in Soils around Coal Mine Spoil Piles in Shiguai District of Baotou,Inner Mongolia,Northern China[J].Advanced Materials Research,518-523:2068-2072.
    陈秀端,卢新卫,赵彩凤,等.2011.西安市二环内表层土壤重金属空间分布特征[J].地理学报,66(9):1281-1288.
    程淑杰,王重玲,王婷,等.2017.基于GIS的宁夏中部干旱带土地利用生态安全动态评价[J].水土保持研究,24(4):342-348.
    楚纯洁,周金风.2014.平顶山矿区丘陵坡地土壤重金属分布及污染特征[J].地理研究,33(7):1383-1392.
    窦嘉,周永章,高全洲,等.2007.土壤环境中重金属生物有效性评价方法及其环境学意义[J].土壤通报,38(3):576-583.
    高军侠,党宏斌,姜灵彦,等.2013.矿区周围农田土壤重金属铜锌铅污染及生物效应分析[J].中国农学通报,29(26):137-141.
    国家环境保护局.1997.GB15618-1995,土壤环境质量标准.中华人民共和国国家标准[S].北京:中国标准出版社:4.
    黄宝强,刘青,胡振鹏,等.2012.生态安全评价研究述评[J].长江流域资源与环境,21(Z2):150-156.
    贾艳红,赵军,南忠仁,等.2006.基于熵权法的草原生态安全评价-以甘肃牧区为例[J].生态学杂志,25(8):1003-1008.
    李春燕,南灵,2015.陕西省土地生态安全动态评价及障碍因子诊断[J].中国土地科学,29(4):72-81.
    李双成.2014.生态系统服务地理学[M].北京:科学出版社:139-141.
    刘纪远.1996.中国资源环境遥感宏观调查与动态研究[M].北京:中国科学技术出版社:175.
    卢志刚,夏明昭,张晓辉.2011.基于多阶段减排规划的发电厂碳捕集系统优化配置[J].中国电机工程学报,35(31):65-71.
    欧阳威,鞠欣妍,高翔,等.2018.考虑面源污染的农业开发流域生态安全评价研究[J].中国环境科学,38(3):1194-1200.
    邱蔻华.2002.管理决策与应用熵学[M].北京:机械工业出版社:193-203.
    石占飞,王力.2013.神木矿区土壤重金属含量特征及潜在风险评价[J].农业环境科学学报,32(6):1150-1158.
    王英辉,祁士华,陈学军.2006.金属矿山废弃地重金属污染的植物修复治理技术[J].中国矿业,15(10):67-71.
    徐建华.2002.现代地理学中的数学方法[M].北京:高等教育出版社:305-335.
    许月卿,蔡云龙,彭建.2008.土地利用变化的土壤侵蚀效应评价:西南喀斯特山区的一个研究案例[M].北京:科学出版社:109-120.
    姚荣江,杨劲松,杨奇勇,等.2011.禹城地区土壤铅含量空间分布的指示克里格估值[J].生态环境学报,20(12):1912-1918.
    岳荣,史锐,张红.2016.土壤中重金属累积特征及生态风险评价--以乌拉特后旗有色金属冶炼企业集中区为例[J].土壤,48(2):314-321.
    张锂,韩国才,陈慧,等.2008.黄土高原煤矿区煤矸石中重金属对土壤污染的研究[J].煤炭学报,33(10):1141-1146.
    张艳丽,蒲欣冬,陈怀录,等.2011.基于遥感和GIS的石羊河流域生态安全评价[J].中国沙漠,31(6):1493-1500.
    中国环境监测总站.1990.中国土壤元素背景值[M].北京:中国环境科学出版社:329-483.
    钟晓兰,周生路,李江涛,等.2010.经济快速发展区土壤重金属累积评价[J].环境科学,31(6):1608-1616.
    周艳,陈樯,邓绍坡,等.2018.西南某铅锌矿区农田土壤重金属空间主成分分析及生态风险评价[J].环境科学,39(6):2884-2892.
    邹长新,陈金林,李海东.2015.基于模糊综合评价的若尔盖湿地生态安全评价[J].南京林业大学学报:自然科学版,36(3):53-58.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700