针对中枢神经系统的核酸递送策略及其诊疗应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Delivery of nucleic acids towards central nervous system for theranostic applications
  • 作者:周海斌 ; 李江 ; 胡霁 ; 王丽华
  • 英文作者:ZHOU Haibin;LI Jiang;HU Ji;WANG Lihua;Shanghai Institute of Applied Physics,Chinese Academy of Sciences;School of Life Science and Technology,ShanghaiTech University;University of Chinese Academy of Sciences;
  • 关键词:病毒载体 ; 非病毒载体 ; 中枢神经系统 ; 基因治疗
  • 英文关键词:Viral vectors;;Non-viral vectors;;Central nervous system;;Gene therapy
  • 中文刊名:HJSU
  • 英文刊名:Nuclear Techniques
  • 机构:中国科学院上海应用物理研究所;上海科技大学生命科学与技术学院;中国科学院大学;
  • 出版日期:2019-05-10
  • 出版单位:核技术
  • 年:2019
  • 期:v.42
  • 基金:国家重点基础研究发展计划(No.2016YFA0400900、No.2016YFA0201200);; 中国科学院前沿科学重点研究计划(No.QYZDJ-SSW-SLH031);中国科学院王宽诚率先人才计划"卢嘉锡国际团队项目";; 国家自然科学基金(No.21775157、No.31671086、No.61890950、No.61890951)~~
  • 语种:中文;
  • 页:HJSU201905009
  • 页数:17
  • CN:05
  • ISSN:31-1342/TL
  • 分类号:57-73
摘要
近年来,基于核酸分子的探针与药物在针对中枢系统的诊疗应用中展现出强大的潜力。但是,复杂的中枢神经系统以及生理屏障使得核酸分子的递送成为一大难题。因此,开发更加高效而安全的中枢神经递送载体仍是一项迫切需求。本文综述了目前针对中枢神经系统的多种核酸递送方式,包括利用病毒载体、非病毒载体以及无载体递送等方法。这些方法在一定程度上提高了核酸药物递送的效率以及在机体内的稳定性,获得了较好的诊断与治疗效果。本文讨论了这些递送方式的优势和局限性,并对新型核酸递送载体的发展进行了展望。
        [Background] The use of nucleic acid in the diagnosis and treatment of diseases and injuries of the central nervous system(CNS) has shown great promise in recent years. However, transporting nucleic acids to CNS with highly complex structure and barriers remains challenging. [Purpose] This study aims to give a comprehensive review of efficient and low-toxic delivery strategies of nucleic acids towards central nervous system for theranostic applications.[Methods] By means of literature review, the progress in developing nucleic acid delivery strategies for applications in CNS in recent years are analyzed. These strategies can be categorized into viral vector-based, nonviral carrier-based, and carrier-free. We also discussed their advantages and limitations, and provided suggestions for the future development of novel strategies. [Results & Conclusion] These strategies have been shown to enhance the structural stability and cell uptake of the nucleic acids, thus improving the theranostic performance.
引文
1 Deverman B E,Ravina B M,Bankiewicz K S,et al.Gene therapy for neurological disorders:progress and prospects[J].Nature Reviews Drug Discovery,2018,17(9):641-659.DOI:10.1038/nrd.2018.110.
    2 Barthelemy F,Wein N.Personalized gene and cell therapy for Duchenne muscular dystrophy[J].Neuromuscular Disorders,2018,28(10):803-824.DOI:10.1016/j.nmd.2018.06.009.
    3黄庆,孙艳红,王璐,等.针灸对帕金森小鼠模型运动机能调节的分子机制研究[J].核技术,2012,35(11):877-880.HUANG Qing,SUN Yanhong,WANG Lu,et al.Acupuncture improve motor function in a mouse model of Parkinson's disease[J].Nuclear Techniques,2012,35(11):877-880.
    4林承列,李江,周宜,等.基于细胞自噬机制的健康科学研究进展[J].核技术,2017,40(2):020501.DOI:10.11889/j.0253-3219.2017.hjs.40.020501.LIN Chenglie,LI Jiang,ZHOU Yi,et al.Autophagybased mechanistic understanding of healthcare science[J].Nuclear Techniques,2017,40(2):020501.DOI:10.11889/j.0253-3219.2017.hjs.40.020501.
    5 Choudhury S R,Hudry E,Maguire C A,et al.Viral vectors for therapy of neurologic diseases[J].Neuropharmacology,2017,120:63-80.DOI:10.1016/j.neuropharm.2016.02.013.
    6 Cartier N,Aubourg P.Hematopoietic stem cell transplantation and hematopoietic stem cell gene therapy in X-linked adrenoleukodystrophy[J].Brain Pathology,2010,20(4):857-862.DOI:10.1111/j.1750-3639.2010.00394.x.
    7 Biffi A,Montini E,Lorioli L,et al.Lentiviral hematopoietic stem cell gene therapy benefits metachromatic leukodystrophy[J].Science,2013,341(6148):864.DOI:10.1126/science.1233158.
    8 Pierce E A,Bennett J.The status of RPE65 gene therapy trials:safety and efficacy[J].Cold Spring Harbor Perspectives in Medicine,2015,5(9):1-16.DOI:10.1101/cshperspect.a017285.
    9 Lentz T B,Gray S J,Samulski R J.Viral vectors for gene delivery to the central nervous system[J].Neurobiology of Disease,2012,48(2):179-188.DOI:10.1016/j.nbd.2011.09.014.
    10 Zinn E,Vandenberghe L H.Adeno-associated virus:fit to serve[J].Current Opinion in Virology,2014,8:90-97.DOI:10.1016/j.coviro.2014.07.008.
    11 Atchison R W,Casto B C,Hammon W M.Adenovirusassociated defective virus particles[J].Science,1965,149(3685):754-755.DOI:10.1126/science.149.3685.754.
    12 Xie Q,Bu W,Bhatia S,et al.The atomic structure of adeno-associated virus(AAV-2),a vector for human gene therapy[J].Proceedings of the National Academy of Sciences,2002,99(16):10405-10410.DOI:10.1073/pnas.162250899.
    13 Cassinotti P,Weitzand M,Tratschin J D.Organization of the adeno-associated virus(AAV)capsid gene:mapping of a minor spliced mRNA coding for virus capsid protein[J].Virology,1988,167(1):176-184.DOI:10.1016/0042-6822(88)90067-0.
    14 Wu Z,Asokan A,Samulski R J.Adeno-associated virus serotypes:vector toolkit for human gene therapy[J].Molecular Therapy,2006,14(3):316-327.DOI:10.1016/j.ymthe.2006.05.009.
    15 Nash K,Chen W,Muzyczka N.Complete in vitro reconstitution of adeno-associated virus DNA replication requires the minichromosome maintenance complex proteins[J].Journal of Virology,2008,82(3):1458-1464.DOI:10.1128/JVI.01968-07.
    16 Ferrari F K,Samulski T,Shenk T,et al.Second-strand synthesis is a rate-limiting step for efficient transduction by recombinant adeno-associated virus vectors[J].Journal of Virology,1996,70(5):3227-3234.DOI:10.1016/0166-0934(96)02043-5.
    17 McCarty D M,Monahan P E,Samulski R J.Selfcomplementary recombinant adeno-associated virus(scAAV)vectors promote efficient transduction independently of DNA synthesis[J].Gene Therapy,2001,8(16):1248-1254.DOI:10.1038/sj.gt.3301514.
    18 Joshi C R,Labhasetwar V,Ghorpade A.Destination brain:the past,present,and future of therapeutic gene delivery[J].Journal of Neuroimmune Pharmacology,2017,12(1):51-83.DOI:10.1007/s11481-016-9724-3.
    19 Wang D,Tai P W L,Gao G.Adeno-associated virus vector as a platform for gene therapy delivery[J].Nature Reviews Drug Discovery,2019,18(5):358-378.DOI:10.1038/s41573-019-0012-9.
    20 Pulicherla N,Shen S,Yadav S,et al.Engineering liverdetargeted AAV9 vectors for cardiac and musculoskeletal gene transfer[J].Molecular Therapy,2011,19(6):1070-1078.DOI:10.1038/mt.2011.22.
    21 Maheshri N,Koerber J T,Kaspar B K,et al.Directed evolution of adeno-associated virus yields enhanced gene delivery vectors[J].Nature Biotechnology,2006,24(2):198-204.DOI:10.1038/nbt1182.
    22 Deverman B E,Pravdo P L,Simpson B P,et al.Credependent selection yields AAV variants for widespread gene transfer to the adult brain[J].Nature Biotechnology,2016,34(2):204-209.DOI:10.1038/nbt.3440.
    23 Zufferey R,Dull T,Mandel R J,et al.Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery[J].Journal of Virology,1998,72(12):9873-9880.DOI:10.1016/S0166-0934(98)00115-3.
    24 Shaw A M,Joseph G L,Jasti A C,et al.Differences in vector-genome processing and illegitimate integration of non-integrating lentiviral vectors[J].Gene Therapy,2017,24(1):12-20.DOI:10.1038/gt.2016.69.
    25 Sarkis C,Philippe S,Mallet J,et al.Non-integrating lentiviral vectors[J].Current Gene Therapy,2008,8(6):430-437.DOI:10.2174/156652308786848012.
    26 Kantor B,Bayer M,Ma H,et al.Notable reduction in illegitimate integration mediated by a PPT-deleted,nonintegrating lentiviral vector[J].Molecular Therapy,2011,19(3):547-556.DOI:10.1038/mt.2010.277.
    27 Kumar M,Keller B,Makalou N,et al.Systematic determination of the packaging limit of lentiviral vectors[J].Human Gene Therapy,2001,12(15):1893-1905.DOI:10.1089/104303401753153947.
    28 Akli S,Caillaud C,Vigne E,et al.Transfer of a foreign gene into the brain using adenovirus vectors[J].Nature Genetics,1993,3(3):224-228.DOI:10.1038/ng0393-224.
    29 Davidson B L,Allen E D,Kozarsky K F,et al.A model system for in vivo gene transfer into the central nervous system using an adenoviral vector[J].Nature Genetics,1993,3(3):219-223.DOI:10.1038/ng0393-219.
    30 Davison A J,Benko M,Harrach B.Genetic content and evolution of adenoviruses[J].Journal of General Virology,2003,84(Pt11):2895-2908.DOI:10.1099/vir.0.19497-0.
    31 Parks R J,Chen L,Anton M,et al.A helper-dependent adenovirus vector system:removal of helper virus by cremediated excision of the viral packaging signal[J].Proceedings of the National Academy of Sciences of the United States of America,1996,93(24):13565-13570.DOI:10.1073/pnas.93.24.13565.
    32 Volpers C,Kochanek S.Adenoviral vectors for gene transfer and therapy[J].Journal of Gene Medicine,2004,6:S164-S171.DOI:10.1002/jgm.496.
    33 Wilson J M.Lessons learned from the gene therapy trial for ornithine transcarbamylase deficiency[J].Molecular Genetics and Metabolism,2009,96(4):151-157.DOI:10.1016/j.ymgme.2008.12.016.
    34 Grunewald K,Desai P,Winkler D C,et al.Threedimensional structure of herpes simplex virus from cryoelectron tomography[J].Science,2003,302(5649):1396-1398.DOI:10.1126/science.1090284.
    35 Diefenbach R J,Miranda-Saksena M,Douglas M W,et al.Transport and egress of herpes simplex virus in neurons[J].Reviews in Medical Virology,2008,18(1):35-51.DOI:10.1002/rmv.560.
    36 Marconi P,Argnani R,Epstein A L,et al.HSV as a vector in vaccine development and gene therapy[J].Pharmaceutical Biotechnology,2009,655:118-144.DOI:10.1007/978-1-4419-1132-2.
    37 Sena-Esteves M,Saeki Y,Fraefel C,et al.HSV-1amplicon vectors-simplicity and versatility[J].Molecular Therapy,2000,2(1):9-15.DOI:10.1006/mthe.2000.0096.
    38 Saha S,Sarkar P.Understanding the interaction of DNA-RNA nucleobases with different ZnO nanomaterials[J].Physical Chemistry Chemical Physics,2014,16(29):15355-15366.DOI:10.1039/c4cp01041h.
    39 Ramos J,Forcada J,Hidalgo-Alvarez R.Cationic polymer nanoparticles and nanogels:from synthesis to biotechnological applications[J].Chemical Reviews,2014,114(1):367-428.DOI:10.1021/cr3002643.
    40 Liang L,Li J,Li Q,et al.Single-particle tracking and modulation of cell entry pathways of a tetrahedral DNAnanostructure in live cells[J].Angewandte ChemieInternational Edition,2014,53(30):7745-7750.DOI:10.1002/anie.201403236.
    41 Hurst S J,Lytton-Jean A K R,Mirkin C A.Maximizing DNA loading on a range of gold nanoparticle sizes[J].Analytical Chemistry,2006,78(24):8313-8318.DOI:10.1021/ac0613582.
    42 Lee J S,Seferos D S,Giljohann D A,et al.Thermodynamically controlled separation of polyvalent2-nm gold nanoparticle-oligonucleotide conjugates[J].Journal of the American Chemical Society,2008,130(16):5430-5431.DOI:10.1021/ja800797h.
    43 Lin G M,Li L,Panwar N,et al.Non-viral gene therapy using multifunctional nanoparticles:status,challenges,and opportunities[J].Coordination Chemistry Reviews,2018,374:133-152.DOI:10.1016/j.ccr.2018.07.001.
    44 Deshayes S,Morris M,Heitz F,et al.Delivery of proteins and nucleic acids using a non-covalent peptide-based strategy[J].Advanced Drug Delivery Reviews,2008,60(4-5):537-547.DOI:10.1016/j.addr.2007.09.005.
    45 De Jong W H,Borm P J A.Drug delivery and nanoparticles:applications and hazards[J].International Journal of Nanomedicine,2008,3(2):133-149.DOI:10.2147/ijn.s596.
    46 Deng J Z,Gao N N,Wang Y A,et al.Self-assembled cationic micelles based on PEG-PLL-PLLeu hybrid polypeptides as highly effective gene vectors[J].Biomacromolecules,2012,13(11):3795-3804.DOI:10.1021/bm3012538.
    47 Zou S M,Erbacher P,Remy J S,et al.Systemic linear polyethylenimine(L-PEI)-mediated gene delivery in the mouse[J].Journal of Gene Medicine,2000,2(2):128-134.DOI:10.1073/pnas.0502067102.
    48 Kadlecova Z,Rajendra Y,Matasci M,et al.DNA delivery with hyperbranched polylysine:a comparative study with linear and dendritic polylysine[J].Journal of Controlled Release,2013,169(3):276-288.DOI:10.1016/j.jconrel.2013.01.019.
    49 Kesharwani P,Lyer A K.Recent advances in dendrimerbased nanovectors for tumor-targeted drug and gene delivery[J].Drug Discovery Today,2015,20(5):536-547.DOI:10.1016/j.drudis.2014.12.012.
    50 Josse T,De Winter J,Gerbaux P,et al.Cyclic polymers by ring-closure strategies[J].Angewandte Chemie International Edition,2016,55(45):13944-13958.DOI:10.1002/anie.201601677.
    51 Keles E,Song Y,Du D,et al.Recent progress in nanomaterials for gene delivery applications[J].Biomaterials Science,2016,4(9):1291-1309.DOI:10.1039/c6bm00441e.
    52 Maeda H,Nakamura H,Fang J.The EPR effect for macromolecular drug delivery to solid tumors:improvement of tumor uptake,lowering of systemic toxicity,and distinct tumor imaging in vivo[J].Advanced Drug Delivery Reviews,2013,65(1):71-79.DOI:10.1016/j.addr.2012.10.002.
    53 Schlachetzki F,Zhang Y,Boado R J,et al.Gene therapy of the brain-the trans-vascular approach[J].Neurology,2004,62(8):1275-1281.DOI:10.1212/01.Wnl.0000120551.38463.D9.
    54 Ke W L,Shao K,Huang R Q,et al.Gene delivery targeted to the brain using an Angiopep-conjugated polyethyleneglycol-modified polyamidoamine dendrimer[J].Biomaterials,2009,30(36):6976-6985.DOI:10.1016/j.biomaterials.2009.08.049.
    55 Benjaminsen R V,Mattebjerg M A,Henriksen J R,et al.The possible"proton sponge"effect of polyethylenimine(PEI)does not include change in lysosomal p H[J].Molecular Therapy,2013,21(1):149-157.DOI:10.1038/mt.2012.185.
    56 Habib S,Singh M,Ariatti M.Glycosylated liposomes with proton sponge capacity:novel hepatocyte specific gene carriers[J].Current Drug Delivery,2013,10(6):685-695.DOI:10.2174/15672018113109990042.
    57 Kakizawa Y,Harada A,Kataoka K.Glutathione-sensitive stabilization of block copolymer micelles composed of antisense DNA and thiolated poly(ethylene glycol)-blockpoly(L-lysine):a potential carrier for systemic delivery of antisense DNA[J].Biomacromolecules,2001,2(2):491-497.DOI:10.1021/bm000142l.
    58 Wagner E,Plank C,Zatloukal K,et al.Influenza virus hemagglutinin HA-2 N-terminal fusogenic peptides augment gene transfer by transferrin-polylysine-DNAcomplexes:toward a synthetic virus-like gene-transfer vehicle[J].Proceedings of the National Academy of Sciences of the United States of America,1992,89(17):7934-7938.DOI:10.1073/pnas.89.17.7934.
    59 Wu G Y,Wu C H.Receptor-mediated in vitro gene transformation by a soluble DNA carrier system[J].Journal of Biological Chemistry,1987,262(10):4429-4432.DOI:10.0000/PMID3558345.
    60 Sheikh M A,Malik Y S,Xing Z K,et al.Polylysinemodified polyethylenimine(PEI-PLL)mediated VEGFgene delivery protects dopaminergic neurons in cell culture and in rat models of Parkinon's Disease(PD)[J].Acta Biomaterialia,2017,54:58-68.DOI:10.1016/j.actbio.2016.12.048.
    61 Karimi M,Ghasemi A,Zangabad P S,et al.Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems[J].Chemical Society Reviews,2016,45(5):1457-1501.DOI:10.1039/c5cs00798d.
    62 Lin W J,Hsu W Y.Pegylation effect of chitosan based polyplex on DNA transfection[J].Carbohydrate Polymers,2015,120:7-14.DOI:10.1016/j.carbpol.2014.11.046.
    63 Frohlich E.The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles[J].International Journal of Nanomedicine,2012,7:5577-5591.DOI:10.2147/Ijn.S36111.
    64 Tan J K Y,Sellers D L,Pham B,et al.Non-viral nucleic acid delivery strategies to the central nervous system[J].Frontiers in Molecular Neuroscience,2016,9(108):1-13.DOI:10.3389/fnmol.2016.00108.
    65 Park K.Optimal nanoparticle design for effective transport through the blood-brain barrier[J].Journal of Controlled Release,2019,295:290.DOI:10.1016/j.jconrel.2019.01.024.
    66 Saraiva C,Praca C,Ferreira R,et al.Nanoparticlemediated brain drug delivery:overcoming blood-brain barrier to treat neurodegenerative diseases[J].Journal of Controlled Release,2016,235:34-47.DOI:10.1016/j.jconrel.2016.05.044.
    67 Mintzer M A,Simanek E E.Nonviral vectors for gene delivery[J].Chemical Reviews,2009,109(2):259-302.DOI:10.1021/cr800409e.
    68 Eastman S J,Siegel C,Tousignant J,et al.Biophysical characterization of cationic lipid:DNA complexes[J].Biochimica Et Biophysica Acta-Biomembranes,1997,1325(1):41-62.DOI:10.1016/S0005-2736(96)00242-8.
    69 Almofti M R,Harashima H,Shinohara Y,et al.Cationic liposome-mediated gene delivery:biophysical study and mechanism of internalization[J].Arch Biochem Biophys,2003,410(2):246-253.DOI:10.1016/S0003-9861(02)00725-7.
    70 Elouahabi A,Ruysschaert J M.Formation and intracellular trafficking of lipoplexes and polyplexes[J].Molecular Therapy,2005,11(3):336-347.DOI:10.1016/j.ymthe.2004.12.006.
    71 Liu C X,Zhang N.Nanoparticles in gene therapy:principles,prospects,and challenges[J].Nanoparticles in Translational Science and Medicine,2011,104:509-562.DOI:10.1016/B978-0-12-416020-0.00013-9.
    72 Pirollo K F,Zon G,Rait A,et al.Tumor-targeting nanoimmunoliposome complex for short interfering RNAdelivery[J].Human Gene Therapy,2006,17(1):117-124.DOI:10.1089/hum.2006.17.117.
    73 Rehman Z U,Zuhorn I S,Hoekstra D.How cationic lipids transfer nucleic acids into cells and across cellular membranes:recent advances[J].Journal of Controlled Release,2013,166(1):46-56.DOI:10.1016/j.jconrel.2012.12.014.
    74 Zelphati O,Szoka F C.Mechanism of oligonucleotide release from cationic liposomes[J].Proceedings of the National Academy of Sciences of the United States of America,1996,93(21):11493-11498.DOI:10.1073/pnas.93.21.11493.
    75 Mui B,Ahkong Q F,Chow L,et al.Membrane perturbation and the mechanism of lipid-mediated transfer of DNA into cells[J].Biochimica Et Biophysica ActaBiomembranes,2000,1467(2):281-292.DOI:10.1016/S0005-2736(00)00226-1.
    76 Pack D W,Hoffman A S,Pun S,et al.Design and development of polymers for gene delivery[J].Nature Reviews Drug Discovery,2005,4(7):581-593.DOI:10.1038/nrd1775.
    77 Qian Y,Zha Y,Feng B,et al.PEGylated poly(2-(dimethylamino)ethyl methacrylate)/DNA polyplex micelles decorated with phage-displayed TGN peptide for brain-targeted gene delivery[J].Biomaterials,2013,34(8):2117-2129.DOI:10.1016/j.biomaterials.2012.11.050.
    78 Rajera R,Nagpal K,Singh S K,et al.Niosomes:a controlled and novel drug delivery system[J].Biological&Pharmaceutical Bulletin,2011,34(7):945-953.DOI:10.1248/bpb.34.945.
    79 Ojeda E,Agirre M,Villate-Beitia I,et al.Elaboration and physicochemical characterization of niosome-based nioplexes for gene delivery purposes[J].Methods in Molecular Biology,2016,1445:63-75.DOI:10.1007/978-1-4939-3718-9_5.
    80 Ochoa G P,Sesma J Z,Diez M A,et al.A novel formulation based on 2,3-di(tetradecyloxy)propan-1-amine cationic lipid combined with polysorbate 80 for efficient gene delivery to the retina[J].Pharmaceutical Research,2014,31(7):1665-1675.DOI:10.1007/s11095-013-1271-5.
    81 Attia N,Mashal M,Grijalvo S,et al.Stem cell-based gene delivery mediated by cationic niosomes for bone regeneration[J].Nanomedicine-Nanotechnology Biology and Medicine,2018,14(2):521-531.DOI:10.1016/j.nano.2017.11.005.
    82 Mashal M,Attia N,Soto-Sanchez C,et al.Non-viral vectors based on cationic niosomes as efficient gene delivery vehicles to central nervous system cells into the brain[J].International Journal of Pharmaceutics,2018,552(1-2):48-55.DOI:10.1016/j.ijpharm.2018.09.038.
    83 Zhang X X,McIntosh T J,Grinstaff M W.Functional lipids and lipoplexes for improved gene delivery[J].Biochimie,2012,94(1):42-58.DOI:10.1016/j.biochi.2011.05.005.
    84 Hu Y,Zhou Y,Zhao N,et al.Multifunctional pDNA-conjugated polycationic Au nanorod-coated Fe3O4hierarchical nanocomposites for trimodal imaging and combined photothermal/gene therapy[J].Small,2016,12(18):2459-2468.DOI:10.1002/smll.201600271.
    85 Lee S J,Yook S,Yhee J Y,et al.Co-delivery of VEGFand Bcl-2 dual-targeted siRNA polymer using a single nanoparticle for synergistic anti-cancer effects in vivo[J].Journal of Controlled Release,2015,220(Pt B):631-641.DOI:10.1016/j.jconrel.2015.08.032.
    86 Ren Y,Wang R,Gao L,et al.Sequential co-delivery of miR-21 inhibitor followed by burst release doxorubicin using NIR-responsive hollow gold nanoparticle to enhance anticancer efficacy[J].Journal of Controlled Release,2016,228:74-86.DOI:10.1016/j.jconrel.2016.03.008.
    87王璐,韩玉萍,汪婷,等.磁性铁纳米材料的细胞学效应和膜转运机制[J].辐射研究与辐射工艺学报,2016,34(5):050101.DOI:10.11889/j.1000-3436.2016.rrj.34.050101.WANG Lu,HAN Yuping,WANG Ting,et al.Cellular effects and membrane trafficking of magnetic iron nanoparticles[J].Journal of Radiation Research and Radiation Processing,2016,34(5):050101.DOI:10.11889/j.1000-3436.2016.rrj.34.050101.
    88 Wang K,Kievit F M,Jeon M,et al.Nanoparticlemediated target delivery of TRAIL as gene therapy for glioblastoma[J].Advanced Healthcare Materials,2015,4(17):2719-2726.DOI:10.1002/adhm.201500563.
    89 Gomes M J,Kennedy P J,Martins S,et al.Delivery of siRNA silencing P-gp in peptide-functionalized nanoparticles causes efflux modulation at the blood-brain barrier[J].Nanomedicine(Lond),2017,12(12):1385-1399.DOI:10.2217/nnm-2017-0023.
    90 Bonoiu A C,Mahajan S D,Ding H,et al.Nanotechnology approach for drug addiction therapy:gene silencing using delivery of gold nanorod-siRNA nanoplex in dopaminergic neurons[J].Proceedings of the National Academy of Sciences of the United States of America,2009,106(14):5546-5550.DOI:10.1073/pnas.0901715106.
    91 Zeng Y,Yang Z,Li H,et al.Multifunctional nanographene oxide for targeted gene-mediated thermochemotherapy of drug-resistant tumour[J].Scientific Reports,2017,7:43506.DOI:10.1038/srep43506.
    92 Raffa V,Gherardini L,Vittorio O,et al.Carbon nanotubemediated wireless cell permeabilization:drug and gene uptake[J].Nanomedicine(Lond),2011,6(10):1709-1718.DOI:10.2217/nnm.11.62.
    93 Babaei M,Eshghi H,Abnous K,et al.Promising gene delivery system based on polyethylenimine-modified silica nanoparticles[J].Cancer Gene Therapy,2017,24(4):156-164.DOI:10.1038/cgt.2016.73.
    94 Lin G,Chen T,Zou J,et al.Quantum dots-siRNAnanoplexes for gene silencing in central nervous system tumor cells[J].Frontiers in Pharmacology,2017,8:182.DOI:10.3389/fphar.2017.00182.
    95韦贵生,田甜,林承列,等.纳米金在肿瘤检测及放射治疗中的应用[J].辐射研究与辐射工艺学报,2016,34(4):040103.DOI:10.11889/j.1000-3436.2016.rrj.34.040103.WEI Guisheng,TIAN Tian,LIN Chenglie,et al.Application of gold nanoparticles in tumor detection and radiation therapy[J].Journal of Radiation Research and Radiation Processing,2016,34(4):040103.DOI:10.11889/j.1000-3436.2016.rrj.34.040103.
    96宋莎莎,王骏滢,陈婕,等.超小金纳米团簇作为CT对比剂的研究[J].辐射研究与辐射工艺学报,2014,32(5):050202.DOI:10.11889/j.1000-3436.2014.rrj.32.050202.SONG Shasha,WANG Junying,CHEN Jie,et al.Study on ultra-small gold nanoclusters as X-rays computed tomography contrast agent[J].Journal of Radiation Research and Radiation Processing,2014,32(5):050202.DOI:10.11889/j.1000-3436.2014.rrj.32.050202.
    97 Wiley D T,Webster P,Gale A,et al.Transcytosis and brain uptake of transferrin-containing nanoparticles by tuning avidity to transferrin receptor[J].Proceedings of the National Academy of Sciences of the United States of America,2013,110(21):8662-8667.DOI:10.1073/pnas.1307152110.
    98 Jensen S A,Day E S,Ko C H,et al.Spherical nucleic acid nanoparticle conjugates as an RNAi-based therapy for glioblastoma[J].Science Translational Medicine,2013,5(209):209ra152.DOI:10.1126/scitranslmed.3006839.
    99 Seeman N C.Nanomaterials based on DNA[J].Annual Review of Biochemistry,2010,79:65-87.DOI:10.1146/annurev-biochem-060308-102244.
    100 Zhang F,Jiang S X,Wu S Y,et al.Complex wireframe DNA origami nanostructures with multi-arm junction vertices[J].Nature Nanotechnology,2015,10(9):779-784.DOI:10.1038/Nnano.2015.162.
    101 Liu X,Zhang F,Jing X,et al.Complex silica composite nanomaterials templated with DNA origami[J].Nature,2018,559(7715):593-598.DOI:10.1038/s41586-018-0332-7.
    102 Liu Z,Li F,Guo L,et al.The uptake behavior of DNAsix-helix nanostructure with different mammalian cell lines[J].Scientia Sinica Chimica,2017,47(1):109-115.DOI:10.1360/N032016-00043.
    103 He Y,Ye T,Su M,et al.Hierarchical self-assembly of DNA into symmetric supramolecular polyhedra[J].Nature,2008,452(7184):198-U41.DOI:10.1038/nature06597.
    104王建榜,柳华杰,王丽华.DNA折纸模板构建表面等离子体共振结构研究进展[J].辐射研究与辐射工艺学报,2017,35(4):040101.DOI:10.11889/j.1000-3436.2017.rrj.35.040101.WANG Jianbang,LIU Huajie,WANG Lihua.Progress in DNA origami-assembled surface plasmon resonance structures[J].Journal of Radiation Research and Radiation Processing,2017,35(4):040101.DOI:10.11889/j.1000-3436.2017.rrj.35.040101.
    105 Hao Y,Liu L,Zhang L,et al.Real-time label-free analysis of the thermostability of DNA structures using GelRed[J].Nuclear Science and Techniques,2018,29(10):138.DOI:10.1007/s41365-018-0486-x.
    106张宏陆,李凡,柳华杰,等.DNA自组装技术及其在电离辐射检测中的应用[J].辐射研究与辐射工艺学报,2014,32(3):030101.DOI:10.11889/j.1000-3436.2014.rrj.32.030101.ZHANG Honglu,LI Fan,LIU Huajie,et al.DNA selfassembly technology and its application in ionizing radiation detection[J].Journal of Radiation Research and Radiation Processing,2014,32(3):030101.DOI:10.11889/j.1000-3436.2014.rrj.32.030101.
    107 He L,Lu D Q,Liang H,et al.Fluorescence resonance energy transfer-based DNA tetrahedron nanotweezer for highly reliable detection of tumor-related mRNA in living cells[J].ACS Nano,2017,11(4):4060-4066.DOI:10.1021/acsnano.7b00725.
    108 Li J,Fan C,Pei H,et al.Smart drug delivery nanocarriers with self-assembled DNA nanostructures[J].Advanced Materials,2013,25(32):4386-4396.DOI:10.1002/adma.201300875.
    109 Keum J W,Ahn J H,Bermudez H.Design,assembly,and activity of antisense DNA nanostructures[J].Small,2011,7(24):3529-3535.DOI:10.1002/smll.201101804.
    110 Chang M,Yang C S,Huang D M.Aptamer-conjugated DNA icosahedral nanoparticles as a carrier of doxorubicin for cancer therapy[J].ACS Nano,2011,5(8):6156-6163.DOI:10.1021/nn200693a.
    111 Pei H,Zuo X,Zhu D,et al.Functional DNAnanostructures for theranostic applications[J].Accounts of Chemical Research,2014,47(2):550-559.DOI:10.1021/ar400195t.
    112 Lee H,Lytton-Jean A K R,Chen Y,et al.Molecularly selfassembled nucleic acid nanoparticles for targeted in vivo siRNA delivery[J].Nature Nanotechnology,2012,7(6):389-393.DOI:10.1038/Nnano.2012.73.
    113 Jiang D W,Sun Y H,Li J,et al.Multiple-armed tetrahedral DNA nanostructures for tumor-targeting,dualmodality in vivo imaging[J].Acs Applied Materials&Interfaces,2016,8(7):4378-4384.DOI:10.1021/acsami.5b10792.
    114 Li W S,Yang X H,He L L,et al.Self-assembled DNAnanocentipede as multivalent drug carrier for targeted delivery[J].Acs Applied Materials&Interfaces,2016,8(39):25733-25740.DOI:10.1021/acsami.6b08210.
    115宋萍,相法伟,李敏,等.基于DNA纳米结构的别构效应综述[J].辐射研究与辐射工艺学报,2016,34(6):060102.DOI:10.11889/j.1000-3436.2016.rrj.34.060102.SONG Ping,XIANG Fawei,LI Min,et al.Review of dynamic allosteric control based on DNA nanostructure[J].Journal of Radiation Research and Radiation Processing,2016,34(6):060102.DOI:10.11889/j.1000-3436.2016.rrj.34.060102.
    116 Zhao M Z,Wang X,Xing Y K,et al.DNA origamitemplated assembly of plasmonic nanostructures with enhanced Raman scattering[J].Nuclear Science and Techniques,2018,29(1):6.DOI:10.1007/s41365-017-0347-z.
    117 Jiang D W,Ge Z L,Im H J,et al.DNA origami nanostructures can exhibit preferential renal uptake and alleviate acute kidney injury[J].Nature Biomedical Engineering,2018,2(11):865-877.DOI:10.1038/s41551-018-0317-8.
    118 Tian T,Li J,Xie C,et al.Targeted imaging of brain tumors with a framework nucleic acid probe[J].Acs Applied Materials&Interfaces,2018,10(4):3414-3420.DOI:10.1021/acsami.7b17927.
    119 Wei M,Chen N,Li J,et al.Polyvalent immunostimulatory nanoagents with self-assembled CpGoligonucleotide-conjugated gold nanoparticles[J].Angewandte Chemie-International Edition,2012,51(5):1202-1206.DOI:10.1002/anie.201105187.
    120 Li J,Pei H,Zhu B,et al.Self-assembled multivalent DNAnanostructures for noninvasive intracellular delivery of immunostimulatory CpG oligonucleotides[J].ACS Nano,2011,5(11):8783-8789.DOI:10.1021/nn202774x.
    121 Chen N,Wei M,Sun Y,et al.Self-assembly of polyadenine-tailed CpG oligonucleotide-gold nanoparticle nanoconjugates with immunostimulatory activity[J].Small,2014,10(2):368-375.DOI:10.1002/smll.201300903.
    122 Bennett C F,Swayze E E.RNA targeting therapeutics:molecular mechanisms of antisense oligonucleotides as a therapeutic platform[J].Annual Review of Pharmacology and Toxicology,2010,50:259-293.DOI:10.1146/annurev.pharmtox.010909.105654.
    123 Evers M M,Toonen L J A,van Roon-Mom W M C.Antisense oligonucleotides in therapy for neurodegenerative disorders[J].Advanced Drug Delivery Reviews,2015,87:90-103.DOI:10.1016/j.addr.2015.03.008.
    124 Khvorova A,Watts J K.The chemical evolution of oligonucleotide therapies of clinical utility[J].Nature Biotechnology,2017,35(3):238-248.DOI:10.1038/nbt.3765.
    125 Schoch K M,Miller T M.Antisense oligonucleotides:translation from mouse models to human neurodegenerative diseases[J].Neuron,2017,94(6):1056-1070.DOI:10.1016/j.neuron.2017.04.010.
    126 Toba S,Tenno M,Konishi M,et al.Brain-specific expression of a novel human UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase(GalNAc-T9)[J].Biochimica Et Biophysica Acta-Gene Structure and Expression,2000,1493(1-2):264-268.DOI:10.1016/S0167-4781(00)00180-9.
    127 Swayze E E,Siwkowski A M,Wancewicz E V,et al.Antisense oligonucleotides containing locked nucleic acid improve potency but cause significant hepatotoxicity in animals[J].Nucleic Acids Research,2007,35(2):687-700.DOI:10.1093/nar/gkl1071.
    128 Suzuki T,Wu D,Schlachetzki F,et al.Imaging endogenous gene expression in brain cancer in vivo with111In-peptide nucleic acid antisense radiopharmaceuticals and brain drug-targeting technology[J].The Journal of Nuclear Medicine,2004,45(10):1766-1775.DOI:10.1162/1535350042973535.
    129 Pardridge W M,Boado R J,Kang Y S.Vector-mediated delivery of a polyamide("peptide")nucleic acid analogue through the blood-brain barrier in vivo[J].Proceedings of the National Academy of Sciences of the United States of America,1995,92(12):5592-5596.DOI:10.1073/pnas.92.12.5592.
    130 Reissner K J,Sartor G C,Vazey E M,et al.Use of vivomorpholinos for control of protein expression in the adult rat brain[J].Journal of Neuroscience Methods,2012,203(2):354-360.DOI:10.1016/j.jneumeth.2011.10.009.
    131 Mendes R,van Wissen L,de Jager M W,et al.Local delivery of an antisense oligonucleotide for recessive dystrophic epidermolysis bullosa[J].Journal of Investigative Dermatology,2017,137(10):S223.DOI:10.1016/j.jid.2017.07.178.
    132 Chen K S,McGinley L M,Kashlan O N,et al.Targeted intraspinal injections to assess therapies in rodent models of neurological disorders[J].Nature Protocols,2019,14(2):331-349.DOI:10.1038/s41596-018-0095-5.
    133 Kordasiewicz H B,Stanek L M,Wancewicz E V,et al.Sustained therapeutic reversal of Huntington's disease by transient repression of huntingtin synthesis[J].Neuron,2012,74(6):1031-1044.DOI:10.1016/j.neuron.2012.05.009.
    134 Bishop K M.Progress and promise of antisense oligonucleotide therapeutics for central nervous system diseases[J].Neuropharmacology,2017,120:56-62.DOI:10.1016/j.neuropharm.2016.12.015.
    135 Corey D R.Nusinersen,an antisense oligonucleotide drug for spinal muscular atrophy[J].Nature Neuroscience,2017,20(4):497-499.DOI:10.1038/nn.4508.
    136 Mir L M,Moller P H,Andre F,et al.Electric pulsemediated gene delivery to various animal tissues[J].NonViral Vectors for Gene Therapy,Second Edition:Part 2,2005,54:83-114.DOI:10.1016/S0065-2660(05)54005-7.
    137 De Vry J,Martinez-Martinez P,Losen M,et al.In vivo electroporation of the central nervous system:a non-viral approach for targeted gene delivery[J].Prog Neurobiol,2010,92(3):227-244.DOI:10.1016/j.pneurobio.2010.10.001.
    138 Araki I,Nakamura H.Engrailed defines the position of dorsal di-mesencephalic boundary by repressing diencephalic fate[J].Development,1999,126(22):5127-5135.DOI:10.1007/s004290050303.
    139 Miyasaka N,Arimatsu Y,Takiguchi-Hayashi K.Foreign gene expression in an organotypic culture of cortical anlage after in vivo electroporation[J].Neuroreport,1999,10(11):2319-2323.DOI:10.1097/00001756-199908020-00018.
    140 Tanaka S,Uehara T,Nomura Y.Up-regulation of proteindisulfide isomerase in response to hypoxia/brain ischemia and its protective effect against apoptotic cell death[J].Journal of Biological Chemistry,2000,275(14):10388-10393.DOI:10.1074/jbc.275.14.10388.
    141 Kitamura K,Judkewitz B,Kano M,et al.Targeted patchclamp recordings and single-cell electroporation of unlabeled neurons in vivo[J].Nature Methods,2008,5(1):61-67.DOI:10.1038/Nmeth1150.
    142 De Vry J,Martinez-Martinez P,Losen M,et al.Low current-driven micro-electroporation allows efficient In vivo delivery of nonviral DNA into the adult mouse brain[J].Molecular Therapy,2010,18(6):1183-1191.DOI:10.1038/mt.2010.62.
    143 Nomura T,Nishimura Y,Gotoh H,et al.Rapid and efficient gene delivery into the adult mouse brain via focal electroporation[J].Scientific Reports,2016,6:29817.DOI:Artn 29817 10.1038/Srep29817.
    144 Yin H,Kanasty R L,Eltoukhy A A,et al.Non-viral vectors for gene-based therapy[J].Nature Reviews Genetics,2014,15(8):541-555.DOI:10.1038/nrg3763.
    145 Stanimirovic D B,Sandhu J K,Costain W J.Emerging technologies for delivery of biotherapeutics and gene therapy across the blood-brain barrier[J].Biodrugs,2018,32(6):547-559.DOI:10.1007/s40259-018-0309-y.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700