直流微电网基于等价输入干扰的自适应无源控制
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Adaptive Passivity-based Control for DC Micro-grid Based on Equivalent Input Disturbance
  • 作者:杨帆 ; 张峰毓 ; 李东东
  • 英文作者:YANG Fan;ZHANG Fengyu;LI Dongdong;School of Electrical Engineering, Shanghai University of Electrical Power;
  • 关键词:直流微电网 ; 强跟踪滤波器 ; 等价输入干扰 ; 自适应无源控制 ; 鲁棒性 ; 抗干扰性
  • 英文关键词:DC micro-grid;;strong tracking filter;;equivalent input disturbance;;adaptive passivity-based control;;robustness;;anti-interference
  • 中文刊名:GDYJ
  • 英文刊名:High Voltage Engineering
  • 机构:上海电力学院电气工程学院;
  • 出版日期:2018-04-24 13:59
  • 出版单位:高电压技术
  • 年:2019
  • 期:v.45;No.314
  • 基金:国家自然科学基金(51407114);; 上海市科委部分地方院校能力建设计划(17020500800)~~
  • 语种:中文;
  • 页:GDYJ201901031
  • 页数:7
  • CN:01
  • ISSN:42-1239/TM
  • 分类号:242-248
摘要
针对直流微电网孤岛运行时,线路阻抗的不确定性和故障等作用致使控制器输出受系统参数突变的问题,提出了一种基于等价输入干扰的自适应无源控制方法(EID-APBC)。首先采用强跟踪滤波器在线估计出由不确定系统参数变化所引起的控制器等价输入干扰,然后由前馈补偿器对控制器的控制量进行修正补偿,最终消除直流微电网稳定域内的稳态控制误差。仿真结果表明,当系统参数发生变化时,直流微电网母线电压仍能保持在期望的参考值。EID-APBC控制的直流微电网在系统稳定域内具有良好的鲁棒性和控制性能。
        When the DC micro-grid operates in an isolated island, due to the uncertainties of line impedance or interference, the output of controller will be affected by the sudden change of system parameters. To solve the problem, we propose a novel adaptive passivity-based control based on equivalent input disturbance(EID-APBC) method for DC micro-grid. Firstly, the equivalent input disturbance caused by the inaccurate system parameters is estimated by the strong tracking filter. Then, a feed-forward compensator is used to correct the control quantity of passivity-based control system and compensate the disturbance caused by time-varying parameters. Finally, the steady-state control error of the DC microgrid in the stable region can be eliminated. Simulation results show that when the parameters of actual system change, the bus voltage of DC micro-grid can be kept at the reference value. The DC micro-grid controlled by EID-APBC still has a good robustness and control performance in the stable region.
引文
[1]朱永强,贾利虎,蔡冰倩,等.交直流混合微电网拓扑与基本控制策略综述[J].高电压技术,2016,42(9):2756-2767.ZHU Yongqiang,JIA Lihu,CAI Bingqian,et al.Overview on topologies and basic control strategies for hybrid AC/DC microgroid[J].High Voltage Engineering,2016,42(9):2756-2767.
    [2]李霞林,郭力,王成山,等.直流微电网关键技术研究综述[J].中国电机工程学报,2016,36(1):2-17.LI Xialin,GUO Li,WANG Chengshan,et al.Key technologies of DCmicrogrids:an overview[J].Proceedings of the CSEE,2016,36(1):2-17.
    [3]MIRSAEIDI S,DONG X Z,SHI S H,et al.Challenges,advances and future directions in protection of hybrid AC/DC microgrids[J].IETRenewable Power Generation,2017,11(12):1495-1502.
    [4]DRAGICEVIC T,VASQUEZ J C,GUERRERO J M,et al.Advanced LVDC electrical power architectures and microgrids:a step toward a new generation of power distribution networks[J].IEEE Electrifiaction Magazine,2014,2(1):54-65.
    [5]欧阳丽,周丽红,何海斌.无需互联通信的直流微电网实时功率协调控制策略[J].电网技术,2015,39(12):3449-3456.OUYANG Li,ZHOU Lihong,HE Haibin.Real-time power coordinated control strategy for DC microgrid without communication[J].Power System Technology,2015,39(12):3449-3456.
    [6]王义军,郑晴予,李殿文.直流微电网中关键技术的研究[J].高压电器,2016,52(6):18-22.WANG Yijun,ZHENG Qingyu,LI Dianwen.Study of key technologies in DC micro-grid[J].High Voltage Apparatus,2016,52(6):18-22.
    [7]YANG H X,YU M,XIN T,et al.Decentralized control for parallel bidirectional power converters of a grid-connected DC micro-grid[C]∥42 Annual Conference of the IEEE Industrial Electronics Society.Firenze,Italy:IEEE,2016:6085-6090.
    [8]MAJID M,EDRIS P,BO N J.A control plan for the stable operation of microgrids during grid-connected and island modes[J].Electric Power System Research,2015,129(1):10-22.
    [9]KUMAR M,SRIVASTAVA S C,SINGH S N.Control strategies of a DC microgrid for grid connected and island operations[J].IEEETransactions on Smart Grid,2015,6(4):1588-1601.
    [10]李斌,宝海龙,郭力.光储微电网孤岛系统的储能控制策略[J].电力自动化设备,2014,34(3):8-15.LI Bin,BAO Hailong,GUO Li.Strategy of energy storage control for islanded microgrid with photovoltaic and energy storage systems[J].Electric Power Automation Equipment,2014,34(3):8-15.
    [11]MARZOOGHI H,RAOOFAT M.Improving the performance of proton exchange membrane and solid oxide fuel cells under voltage flicker using fuzzy-PI controller[J].International Journal of Hydrogen Energy,2012,37(9):7796-7806.
    [12]孟明,陈世超,张立娜,等.城市综合交通供电系统的协调控制策略[J].高电压技术,2017,43(6):2069-2079.MENG Ming,CHEN Shichao,ZHANG Lina,et al.Coordinated control strategy for power supply system of urban comprehensive transportation[J].High Voltage Engineering,2017,43(6):2069-2079.
    [13]HASSAN E F,FOUAD G,JOSEP M G,et al.Modeling and nonlinear control of fuel cell/supercapacitor hybrid energy storage system for electric vehicles[J].IEEE Transactions on Vehicular Technology,2014,63(7):3011-3018.
    [14]薛贵挺,张焰,祝达康.孤立直流微电网运行控制策略[J].电力自动化设备,2013,33(3):112-117.XUE Guiting,ZHANG Yan,ZHU Dakang.Operational control strategy of stand-alone DC microgrid[J].Electric Power Automation Equipment,2013,33(3):112-117.
    [15]李敏,徐群.基于IDA-PBC的LCL滤波并网逆变器控制[J].电力系统及其自动化学报,2014,26(4):50-55.LI Min,XU Qun.Control strategy based on IDA-PBC for grid-connected inverter with LCL filter[J].Proceedings of the CSU-EPSA,2014,26(4):50-55.
    [16]GU Y J,LI W H,HE X N.Passivity-based control of DC micro-grid for self disciplined stabilization[J].IEEE Transactions on Power System,2015,30(5):2623-2632.
    [17]HECTOR R,YANN L G,BERNHARD M,et al.On the passivity based control of irreversible processes:a port Hamiltonian approach[J].Automatica,2016,64(1):105-111.
    [18]焦重庆,汪贝,李昱蓉,等.用于半波长输电线路的精细化传输线模型[J].高电压技术,2018,44(1):3-13.JIAO Chongqing,WANG Bei,LI Yurong,et al.Refined transmission line model for half-wavelength transmission lines[J].High Voltage Engineering,2018,44(1):3-13.
    [19]TOFIGHI A,KALANTAR M.Applying passivity-based control for the DC/DC converter of PEM fuel cell[C]∥Power Electronic&Drive Systems&Technologies Conference.Tehran,Iran:IEEE,2010:439-444.
    [20]EMADI A.Modeling and analysis of multiconverter DC power electronic systems using the generalized state-space averaging method[J].IEEE Transactions on Industrial Electronics,2004,51(3):661-668.
    [21]周东华,席裕庚,张仲俊.非线性系统的带次优渐消因子的扩展卡尔曼滤波[J].控制与决策,1990,5(5):1-6.ZHOU Donghua,XI Yugeng,ZHANG Zhongjun.Suboptimal fading extended Kalman filtering for nonlinear systems[J].Control and Decision,1990,5(5):1-6.
    [22]陈晓静,李开成,张明,等.基于强跟踪滤波器的电压暂降检测[J].高电压技术,2015,41(10):3454-3463.CHEN Xiaojing,LI Kaicheng,ZHANG Ming,et al.Voltage sag detection based on strong tracking filter[J].High Voltage Engineering,2015,41(10):3454-3463.
    [23]HU W J,ZHOU D H.Adaptive control of DC-DC converters based on input equivalent disturbance[C]∥Proceedings of the 27th Chinese Control Conference.Kunming,China:IEEE,2008:38-42.
    [24]杨帆,盛波,符杨.独立直流微电网中燃料电池与超级电容的功率协调控制[J].电力自动化设备,2016,36(10):113-120.YANG Fan,SHENG Bo,FU Yang.Coordinated power control between fuel cell and supercapacitor for isolated DC microgrid[J].Electric Power Automation Equipment,2016,36(10):113-120.
    [25]支娜,张辉.直流微电网改进分级控制策略研究[J].高电压技术,2016,42(4):1316-1325.ZHI Na,ZHANG Hui.Improved hierarchical control strategy for DCmicrogrid[J].High Voltage Engineering,2016,42(4):1316-1325.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700