基于凸轮机构的变刚度仿生柔性关节设计与分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Design and analysis of variable stiffness bionic flexible joint based on cam mechanism
  • 作者:李满宏 ; 马艳悦 ; 张明路 ; 张建华
  • 英文作者:Li Manhong;Ma Yanyue;Zhang Minglu;Zhang Jianhua;School of Mechanical Engineering,Hebei University of Technology;
  • 关键词:机器人 ; 柔性关节 ; 变刚度 ; 凸轮机构 ; 主被动融合控制
  • 英文关键词:robot;;flexible joint;;variable stiffness;;cam mechanism;;active-passive fusion control
  • 中文刊名:YQXB
  • 英文刊名:Chinese Journal of Scientific Instrument
  • 机构:河北工业大学机械工程学院;
  • 出版日期:2019-02-15
  • 出版单位:仪器仪表学报
  • 年:2019
  • 期:v.40
  • 基金:国家自然科学基金(61803142);; 河北省自然科学基金(F2018202210);; 河北省高等学校科学技术研究(QN2017047)项目资助
  • 语种:中文;
  • 页:YQXB201902025
  • 页数:10
  • CN:02
  • ISSN:11-2179/TH
  • 分类号:216-225
摘要
为满足足式机器人跑跳等动态运动对关节柔性及其变刚度特性的迫切要求,借鉴生物关节柔性特征与主被动刚度调节机理,创新地提出了一种基于凸轮机构的新型变刚度仿生柔性关节。基于关节刚度特性分析,构建了关节整体刚度模型,并针对影响关节刚度特性的各结构参数开展了系统优化设计,研制出了一款紧凑型高集成度关节样机。关节样机性能实验结果表明,基于凸轮机构的变刚度仿生柔性关节具备理想的关节输出力矩与刚度调节范围,可通过关节固有刚度特性与动态刚度特性的主被动融合控制,实现关节瞬时刚度的动态非线性精确调节,能够满足机器人动态运动对关节柔性与刚度的需求。
        In order to meet the urgent requirements for joint flexibility and variable stiffness characteristics in the dynamic motions of legged robot, such as running and jumping, inspired by the flexible features and active-passive stiffness adjustment mechanism of biological joints, a new type of variable stiffness bionic flexible joint based on cam mechanism was proposed innovatively. Based on the analysis of the joint stiffness characteristics, a joint integral stiffness model was constructed. Then, the joint structural parameters affecting its stiffness characteristics were designed optimally and systematically, and a compact highly integrated joint prototype was developed. The joint prototype performance experiment results show that the variable stiffness bionic flexible joint based on cam mechanism has desired joint output torque and stiffness adjustment range. Through the active-passive fusion control of joint intrinsic and dynamic stiffness characteristics, the nonlinear and accurate adjustment of joint instantaneous stiffness is achieved dynamically, which meets the requirements for joint flexibility and stiffness of robot dynamic movement.
引文
[1] 高炳微, 王思凯, 高元锋. 液压四足机器人单腿竖直跳跃步态规划[J]. 仪器仪表学报, 2017, 38(5): 1086-1092.GAO B W, WANG S K, GAO Y F. Single leg vertical hopping gait planning for hydraulic quadruped robot [J]. Chinese Journal of Scientific Instrument, 2017, 38(5): 1086-1092.
    [2] 付小月, 王伟, 王雷, 等. 变刚度关节驱动器动力学特性的分析与研究[J]. 机器人, 2017, 39(4): 466- 473.FU X Y, WANG W, WANG L, et al. Analysis and study on dynamical characteristics of variable stiffness joint actuator [J]. Robot, 2017, 39(4): 466- 473.
    [3] DENG H, XIN G, ZHONG G, et al. Gait and trajectory rolling planning and control of hexapod robots for disaster rescue applications [J]. Robotics and Autonomous Systems, 2017, 95(4): 13- 24.
    [4] 王颜, 房立金, 周生啟. 仿生变刚度关节设计与试验[J]. 农业机械学报, 2018, 49(1): 390-396.WANG Y, FANG L J, ZHOU SH Q. Design of bionic variable stiffness joint [J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(1): 390-396.
    [5] 魏敦文, 葛文杰, 高涛. 仿生灵感下的弹性驱动器的研究综述[J]. 机器人, 2017, 39(4): 541- 550.WEI D W, GE W J, GAO T. Review of elastic actuator research from bionic inspiration [J]. Robot, 2017, 39(4): 541- 550.
    [6] YU H, HUANG S, CHEN G, et al. Human-robot interaction control of rehabilitation robots with series elastic actuators [J]. IEEE Transactions on Robotics, 2015, 31(5): 1089-1100.
    [7] 王颜, 房立金. 机械式仿骨骼肌变刚度机构原理及设计[J]. 机器人, 2015, 37(4): 506- 512.WANG Y, FANG L J. Principle and design of mechanically musculoskeletal variable-stiffness mechanism [J]. Robot, 2015, 37(4): 506- 512.
    [8] OSADA M, ITO N, NAKANISHI Y, et al. Realization of flexible motion by musculoskeletal humanoid “Kojiro” with add-on nonlinear spring units [C]. International Conference on Humanoid Robots, 2010: 174-179.
    [9] HUANG T H, HUANG H P, KUAN J Y. Mechanism and control of continuous-state coupled elastic actuation [J]. Journal of Intelligent & Robotic Systems, 2014, 74(3- 4): 571- 587.
    [10] JAFARI A, TSAGARAKIS N, CALDWELL D. Energy efficient actuators with adjustable stiffness: a review on AwAS, AwAS-II and CompACT VSA changing stiffness based on lever mechanism [J]. Industrial Robot, 2015, 42(3): 242- 251.
    [11] LEE J, WAHRMUND C, JAFARI A. A novel mechanically overdamped actuator with adjustable stiffness (MOD-AwAS) for safe interaction and accurate positioning [J]. Actuators, 2017, 6(3): 22.
    [12] YIN P, LI M, GUO W, et al. Design of a unidirectional joint with adjustable stiffness for energy efficient hopping leg [C]. IEEE International Conference on Robotics and Biomimetics, 2013: 2587- 2592.
    [13] WOLF S, BAHLS T, CHALON M, et al. Soft robotics with variable stiffness actuators: Tough robots for soft human robot interaction [J]. Soft Robotics, 2015: 231- 254.
    [14] 陈志伟, 金波, 朱世强, 等. 液压驱动单腿跳跃机器人柔顺着地分析与控制[J]. 仪器仪表学报, 2017, 38(3): 537- 544.CHEN ZH W, JIN B, ZHU SH Q, et al. Compliant touch-down analysis and control for the hydraulically actuated single-legged hopping robot [J]. Chinese Journal of Scientific Instrument, 2017, 38(3): 537- 544.
    [15] 史延雷, 张小俊, 张明路. 主-被动复合变刚度柔性关节设计与分析[J]. 机械工程学报, 2018, 54(3): 55- 62.SHI Y L, ZHANG X J, ZHANG M L. Design and analysis of an active-passive variable stiffness flexiblejoint [J]. Journal of Mechanical Engineering, 2018, 54(3): 55- 62.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700