基于晶体塑性理论的疲劳裂纹起始数值模拟
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical Simulation of Fatigue Crack Initiation Using Crystallographic Constitutive Equation
  • 作者:刘俊卿 ; 李蒙 ; 左帆 ; 刘红 ; 曹书文
  • 英文作者:LIU Junqing;LI Meng;ZUO Fan;LIU Hong;CAO Shuwen;School of Science,Xi'an University of Architecture & Technology;
  • 关键词:疲劳 ; 晶体塑性本构 ; 裂纹起始 ; 有限元模拟
  • 英文关键词:fatigue;;crystallographic constitutive equation;;crack initiation;;finite element simulation
  • 中文刊名:HKCB
  • 英文刊名:Journal of Aeronautical Materials
  • 机构:西安建筑科技大学理学院;
  • 出版日期:2016-04-08 11:07
  • 出版单位:航空材料学报
  • 年:2016
  • 期:v.36
  • 基金:陕西省教育厅专项基金资助项目(15JK1382)
  • 语种:中文;
  • 页:HKCB201602012
  • 页数:6
  • CN:02
  • ISSN:11-3159/V
  • 分类号:78-83
摘要
在疲劳荷载作用早期,材料在晶体尺度出现裂纹的萌生,为了研究疲劳短裂纹的发展,利用Monte Carlo法建立了多晶体晶粒集合的Voronoi有限元模型,并在Ansys Usermat子程序接口下编写了晶体塑性本构方程子程序,修正了以拉伸硬化为主的疲劳裂纹起裂的计算机模拟方法,并结合TANAKA和MURA的位错偶极子模型,模拟了晶粒集合在疲劳荷载作用下的裂纹萌生,最后与文献实验数据对比,这一修正的方法更加符合实验结果和宏观现象。
        At the early stage of fatigue loading,short crack initiated and then macro crack nucleation appeared on crystal scale in materials. In order to study the development of fatigue crack,the Voronoi finite element model of multi crystal grains was established by Monte Carlo method; crystallographic constitutive equation was programmed with the finite element model based on the user subroutine in ANSYS Usermat,a correction of the computer simulation method which mainly considered tension stiffening effect for fatigue crack initiation was developed. With the consideration of the dislocation dipole model suggested by TANAKA and MURA,fatigue crack initiation of multi crystal grains was simulated. A comparison with currently collected data shows that the corrected method was more consisted with test results and macro phenomenon.
引文
[1]SCHIJVE J.Fatigue of structure and materials[M].[S.l.]:Springer,2009:11-43.
    [2]吴楠,张显程,王正东,等.GH4169合金在650℃下疲劳小裂纹萌生和扩展行为[J].航空材料学报,2015,35(5):71-76.(WU N,ZHANG X C,WANG Z D,et al.Initiation and propagation of small fatigue crack of GH4169 alloy at650℃[J].Journal of Aeronautical Materials,2015,35(5):71-76.)
    [3]王凯,闫志峰,王文先,等.循环荷载作用下镁合金温度演化及高周疲劳性能预测[J].材料工程,2014(1):85-89.(WANG K,YAN Z F,WANG W X,et al.Temperature evolution and fatigue properties prediction for high cycle fatigue of magnesium alloy[J].Journal of Materials Engineering,2014(1):85-89.)
    [4]BJERKN C,MELIN S.A tool to model short crack fatigue growth using a discrete dislocation formulation[J].Internation Journal of Fatigue,2003,25(6):559-566.
    [5]CHRIST H J,FRITZEN C P,KSTER P.Micromechanical modeling of short fatigue cracks[J].Current Opinion in Solid State and Materials Science,2014,18(4):205-211.
    [6]黄新跃,BRUECKNER-FOIT A.多点裂纹起始过程的计算机模拟[J].航空材料学报,2008,28(2):30-33.(HUANG X Y,BRUECKNER-FOIT A.Computer simulation on process of multi-crack initiation[J].Journal of Aeronautical Materials,2008,28(2):30-33.)
    [7]AZAR A S,SVENSSON L E,NYHUS B.Effect of crystal orientation and texture on fatigue crack evolution in high strength steel welds[J].International Journal of Fatigue,2015(77):95-104.
    [8]KRUPP U,ALVAREZ-ARMASB I.Short fatigue crack propagation during low-cycle,high cycle and very-high-cycle fatigue of duplex steel-an unified approach[J].International Journal of Fatigue,2014(65):78-85.
    [9]STRUBBIA R,HEREU'S,ALVAREZ-ARMASA I,et al.Short fatigue cracks nucleation and growth in lean duplex stainless steel LDX2101[J].Materials Science and Engineering A,2014,615:169-174.
    [10]谭晓明,张丹峰,陈跃良,等.基于疲劳裂纹萌生机理的铝合金疲劳寿命可靠性评估方法[J].航空材料学报,2014,34(2):84-89.(TAN X M,ZHANG D F,CHEN Y L,et al.Probabilistic method to predict fatigue life based on crack initiating micro-mechanism of aluminum alloy[J].Journal of Aeronautical Materials,2014,34(2):84-89.)
    [11]童弟华,吴学仁,刘建中,等.基于小裂纹理论的铸造钛合金ZTC4疲劳寿命预测[J].材料工程,2015,43(6):60-65.(TONG D H,WU X R,LIU J Z,et al.Fatigue life prediction of cast titanium alloy ZTC4 based on the small crack theory[J].Journal of Materials Engineering,2015,43(6):60-65.)
    [12]ZHANG T T,JIANG J,SHOLLOCK B A,et al.Slip localization and fatigue crack nucleation near a non-metallic inclusion in polycrystalline nickel-based superalloy[J].Materials Science and Engineering A,2015,641:328-339.
    [13]张丽,吴学仁.基于小裂纹理论的GH4169高温合金的疲劳全寿命预测[J].航空材料学报,2014,34(6):75-83.(ZHANG L,WU X R.Fatigue-life prediction method based on small-crack theory in GH4169 superalloy[J].Journal of Aeronautical Materials,2014,34(6):75-83.)
    [14]ZHANG K S,JU J W,LI Z H,et al.Micromechanics based fatigue life prediction of a polycrystalline metal applying crystal plasticity[J].Mechanics of Materials,2015,85:16-37.
    [15]司良英,邓关宇,吕程,等.基于voronoi图的晶体塑性有限元多晶几何建模[J].材料与冶金学报,2009,8(3):193-197.(SI L Y,DENG G Y,LV C,et al.Polycrystal geometry modeling of crystal plasticity finite element method with voronoi diagram[J].Journal of Materials and Metallurgy,2009,8(3):193-197.)
    [16]TANAKA K,MURA T.A theory of fatigue crack initiation at inclusions[J].Metallurgical and Materials Transactions A.1982,13(1):117-123.
    [17]MANONUKUL A,DUNNE F P E.High-and low-cycle fatigue crack initiation using polycrystal plasticity[J].The Royal Society,2003,460:1881-1903.
    [18]王自强,段祝平.塑性细观力学[M].北京:科学出版社,1995:109-115.
    [19]孔金星,陈辉,何宁,等.纯铁材料动态力学性能测试及本构模型[J].航空学报,2013,35(7):2063-2070.(KONG J X,CHEN H,HE N,et al.Dynamic mechanical property tests and constitutive model of pure iron material[J].Acta Aeronautica et Astronautica sinica,2013,35(7):2063-2070.)
    [20]孙宾,李兆霞.描述微裂纹成核与扩展的疲劳损伤多尺度模型及其应用[J].东南大学学报,2014,44(2):333-338.(SUN B,LI Z X.Multi-scale fatigue damage model for micro-cracks nucleation and growth and its application[J].Journal of Southeast University,2014,44(2):333-338.)
    [21]白以龙,柯孚久,夏蒙棼.固体中微裂纹系统统计演化的基本描述[J].力学学报,1991,23(3):290-298.(BAI Y L,KE F J,XIA M F.Formulation of statistical evolution of micro-cracks in solids[J].Journal of Mechanics,1991,23(3):290-298.)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700