甜菜碱对植物重金属胁迫抗性影响的研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research Progress on the Effects of Glycine Betanie on Plant Resistance to Heavy Metal Stress
  • 作者:姚伟卿 ; 朱月琪
  • 英文作者:YAO Wei-qing;ZHU Yue-qi;Department of Environmental Engineering, Guangdong Polytechnic of Environmental Protection Engineering;
  • 关键词:甜菜碱 ; 抗逆性 ; 重金属胁迫
  • 英文关键词:Glycinebetaine;;resistance;;heavy metal stress
  • 中文刊名:SCHJ
  • 英文刊名:Sichuan Environment
  • 机构:广东环境保护工程职业学院环境工程系;
  • 出版日期:2019-02-26
  • 出版单位:四川环境
  • 年:2019
  • 期:v.38;No.181
  • 基金:广东高校省级重点平台和重大科研项目-青年创新人才项目(自然科学)(2017GkQNCX049)
  • 语种:中文;
  • 页:SCHJ201901028
  • 页数:6
  • CN:01
  • ISSN:51-1154/X
  • 分类号:156-161
摘要
土壤重金属污染导致的农作物重金属累积会提高食用人群的健康风险,故近年来甜菜碱对植物重金属胁迫抗性的研究引起关注。具体介绍了甜菜碱对植物重金属胁迫抗性影响的最新研究进展,并重点综述了其影响机制:甜菜碱可通过增加根际土壤溶液中低分子有机酸﹑有机碳和可溶性糖的量促进植物对重金属的吸收,还可通过影响钙﹑铁等无机离子的吸收转移和增加叶片中果胶﹑叶绿素含量来促进重金属在叶片的累积,提高植物对重金属胁迫的抗性,最后指出需关注的研究方向。
        The accumulation of crop heavy metals caused by soil heavy metal pollution can increase the health risk of the food users. Therefore, in recent years, the study on the resistance of betaine to plant heavy metal stress has attracted attention. This paper introduces the latest research progress of the effects of betaine on plant heavy metal stress resistance, and focuses on its functional mechanism: through increasing the contents of LMWOAs, DOC and soluble sugar in the rhizosphere soil solution, glycinebetaine enhanced the absorption of heavy metals by plants. In addition, through affecting the absorption and transfer of inorganic ions such as Ca, Fe and increasing the chlorophyll and pectin contents in the leaves, glycinebetaine promoted the accumulation of heavy metals in leaves, such that the resistance to heavy metal stress was improved. Finally, the research directions that need to be paid close attention to is pointed out.
引文
[1] 张天鹏,杨兴洪.甜菜碱提高植物抗逆性及促进生长发育研究进展[J].植物生理学报,2017,53(11):1955-1962.
    [2] 赵小强,彭云玲,方鹏,等.不同外源调节物质对低温胁迫下玉米的缓解效应分析[J].干旱地区农业研究,2018,36(3):184-193,229.
    [3] Karima H A S, Mohamed M M , Habebah A A.Glycinebetaine priming improves salt tolerance of wheat[J].Biologia, 2015, 70 (10):1334-1339.
    [4] 李善家,韩多红,王恩军,等.外源甜菜碱对盐胁迫下黑果枸杞种子萌发和幼苗保护酶活性的影响[J].草业科学, 2016, 33 (4):674-680.
    [5] Park E J , Zoran J ,Tony H ,et al. Exogenous Application of Glycinebetaine Increases Chilling Tolerance in tomato plants[J]. Plant Cell Physiol, 2006,47(6):706-714.
    [6] 张宁,司怀军,栗亮,等.转甜菜碱醛脱氢酶基因马铃薯的抗旱耐盐性[J].作物学报, 2009, 35(6): 1146 -1150.
    [7] Nehanjali Parmar,Kunwar Harendra Singh,Deepika Sharma,et al.Genetic engineering strategies for biotic and abiotic stress tolerance and quality enhancement in horticultural crops: a comprehensive review[J].3 Biotech, 2017,7 (4):1-35.
    [8] Wei D D, Zhang W, Wang C C, et al.Genetic engineering of the biosynthesis of glycinebetaine leads to alleviate salt-induced potassium efflux and enhances salt tolerance in tomato plants[J]. Plant Sci, 2017,257: 74-83.
    [9] Zhang H H,Chen J J,Zhu L, et al.Transfer of Cadmium from Soil to Vegetable in the Pearl River Delta area, South China.PLoS Clinical Trials,2014,9(9):108572-108572.
    [10] Ministry of Environmental Protection of the People's Republic of China(中华人民共和国环境保护部) ,Ministry of Land and Resources of the People's Republic of China(中华人民共和国国土资源部).Report on the national general survey of soil contamination(全国首次土壤污染状况调查公报)[EB /OL].[2014-04-17] http: / /www.zhb.gov.cn /gkml / hbb / qt /201404 /t20140417_270670.htm.
    [11] Xiao Q,Zong Y T,Lu S G.Assessment of heavy metal pollution and human health risk in urban soils of steel industrial city (Anshan),Liaoning,Northeast China[J].Ecotoxicology and Environmental Safety,2015,120: 377-385.
    [12] 樊霆,叶文玲,陈海燕,等.农田土壤重金属污染状况及修复技术研究[J].生态环境学报,2013,22(10):1727-1736.
    [13] Lin X,Mou R,Cao Z, et al. Characterization of cadmium-resistant bacteria and their potential for reducing accumulation of cadmium in rice grains[J]. Sci Total Environ, 2016,s 569-570, 97-104.
    [14] Shafaqat Ali, Aaifa Chaudhary, Muhammad Rizwan,et al. Alleviation of chromium toxicity by glycinebetaine is related to elevated antioxidant enzymes and suppressed chromium uptake and oxidative stress in wheat (Triticum aestivum L.)[J].Environ Sci Pollut Res, 2015,22:10669-10678.
    [15] 鹏雯. 甜菜碱提高烟草镉胁迫抗性机理的研究[D].泰安:山东农业大学,2018.
    [16] Fatih D. Effects of Exogenous Glycinebetaine and Trehalose on Cadmium Accumulation and Biological Responses of an Aquatic Plant (Lemna gibba L.)[J].Water Air Soil Pollut,2011,217: 545-556.
    [17] 张根生. 外源甜菜碱对镉胁迫下超黑糯玉米生理特性的影响[D].淮北:淮北师范大学,2017.
    [18] Cao F B.Alleviating effects of exogenous glutathione, glycinebetaine, brassinosteroids and salicylic acid on cadmium toxicity in rice seedlings (Oryza Sativa)[J]. Agrotechnology,2013,2:1-6.
    [19] Rizwan R,Muhammad A A,Iqbal H,et al.Exogenous proline and glycinebetaine mitigate cadmium stress in two genetically different spring wheat (Triticum aestivum L.) cultivars[J].Brazilian Journal of Botany,2014,38(4):399-406.
    [20] Lou Y, Yang Y, Hu L, et al.Exogenous glycinebetaine alleviates the detrimental effect of Cd stress on perennial ryegrass[J]. Ecotoxicology, 2015,24 (6): 1330.
    [21] Farooq M A , Ali S,Hameed A, et al.Cadmium stress in cotton seedlings: Physiological, photosynthesis and oxidative damages alleviated by glycinebetaine[J]. South African Journal of Botany, 2016,104:61-68.
    [22] Bharwana SA, Ali S, Farooq M,et al.Glycine betaine-induced lead toxicity tolerance related to elevated photosynthesis, antioxidant enzymes suppressed lead uptake and oxidative stress in cotton[J]. Turk J Bot,2014,38: 281-292.
    [23] 刘慧,经怀江,周鑫,等.甜菜碱对铅胁迫下玉米幼苗生理特性的影响[J].阜阳师范学院学报(自然科学版),2017,34(1):46-50.
    [24] 巴青松,张根生,凌玉,等.根施甜菜碱对镍胁迫下小麦幼苗生长生理的影响[J].西北植物学报,2017,37(2):315-320.
    [25] Qasim A , Muhammad A. Exogenously applied glycinebetaine enhances seed and seed oil quality of maize (Zea mays L.) under water deficit conditions[J]. Environmental and Experimental Botany,2011,71,249-259.
    [26] 雷永康.叶面施用甜菜碱对苋菜吸收累积重金属特性的影响[D].广州:暨南大学,2015.
    [27] Alia K Y,Sakamoto A,Nonaka H,et al.Enhanced tolerance to light stress of transgenic Arabidopsis plants that express the coda gene for a bacterial choline oxidase[J].Plant Molecular Biology,1999,40(2) : 279-288.
    [28] 高雁,李春,娄恺.干旱胁迫条件下加工番茄对喷施甜菜碱的生理响应[J].植物营养与肥料学报,2012,18(2):426-432.
    [29] 于崧. 转BADH基因大豆对盐碱土壤磷素转化的影响[D].哈尔滨:东北农业大学,2013.
    [30] Yao W Q, Lei Y K, Yang P,et al. Exogenous Glycinebetaine Promotes Soil Cadmium Uptake by Edible Amaranth Grown during Subtropical Hot Season[J],Environ. Res. Public Health,2018, 15(9): 1794.
    [31] Whiting S N, de Souza Tark P,Terry N.Rhizosphere bacteria mobilize Zn for hyoeraccumulation by Thlaspicaerulescens[J]. Environment Science&Technology,2001,35(15):3144-3150.
    [32] 何永美,杨志新,秦丽,等.土壤灭菌和杀真菌剂对紫花苜蓿生长和重金属累积的影响[J].农业环境科学学报,2015,34(4):646-652.
    [33] Wu S C,Luo Y M,Cheung K C,et al.Influence of becteria on Pb and Zn speciation, mobility and bioavailability in soil: a laboratory study[J].Environment Pollution,2006,144(3)765-773.
    [34] He B Y,Yu D P,Chen Y,et al. Use of low-calcium cultivars to reduce cadmium uptake and accumulation in edible amaranth (Amaranthus mangostanus L.)[J]. Chemosphere,2017,71:588-594.
    [35] Hinsinger P,Plassard C,Tang C,et al.Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: a review[J]. Plant soil, 2003,248:43-59.
    [36] Curtin D,Wen G.Plant cation-anion balance as affected by the ionic composition of the growing medium[J]. Plant soil, 2004, 267:109-115.
    [37] Dessureault R J,Luster J,Schulin R,et al.Decrease of labile Zn and Cd in the rhizosphere of hyperaccumulating Thlaspi caerulescens with time[J]. Environ Pollut,2010,158:1955-1962.
    [38] Xu Z M,Li Q S,Yang P, ,et al.Impact of osmoregulation on the differences in Cd accumulation between two contrasting edible amaranth cultivars grown on Cd-polluted saline soils[J]. Environ Pollut,2017,224:89-97.
    [39] Carrier P,Baryla A,Havaux M,et al. Cadmium distribution and miccrolocalization in oilseed rape (Brassica napus) after long term growth on cadmium contaminated soil[J]. Planta,2003,216:939-950.
    [40] Vaculík M,Konlechner C,Langer I,et al. Root anatomy and element distribution vary between two Salix caprea isolates with different Cd accumulation capacities[J]. Environ Pollut,2012,163:117-126.
    [41] Lu L L,Tian S K,Zhang M,,et al.The role of Ca pathway in Cd uptake and translocation by the hyperaccumulator Sedum alfredii[J]. Journal of Hazardous Materials,2010,183(1-3):22-28.
    [42] Yue J Y, Zhang X,Liu N. RETRACTED ARTICLE: Cadmium permeates through calcium channels and activates transcriptomic complexity in wheat roots in response to cadmium stress[J].Genes & Genomics , 2017,39(2): 183-196.
    [43] CHEN H J, TAN L, LI Q S, et al. Screening and preliminary rhizosphere mechanisms of low Cr/Pb accumulation cultivars of Chinese flowering cabbages(Brassica parachinensis L.)[J]. Journal of Agro-Environment Science, 2016, 35(7): 1249-1256.
    [44] 杨姝,李元,毕玉芬,等.紫花苜蓿对Cd胁迫的响应及品种差异研究进展[J].农业环境科学学报,2017,36(8):1453-1461.
    [45] Sana Ullah,Fazal Hadi,Nasir Ali,et al.Foliar Application of Iron (Fe) Improved the Antioxidant Defense and Cd Accumulation Potential of Ricinus communis Under Hydroponic Condition[J].Water, Air, & Soil Pollution,2018, 229:284.
    [46] Chen X, Yang Y Z,Liu D Q,et al.Do soil Fe transformation and secretion of low-molecular-weight organic acids affect the availability of Cd to rice?[J].Environmental Science and Pollution Research. 2015, 22(24):19497-19506.
    [47] Mei X Q,Li S S,Li Q S,et al. Sodium chloride salinity reduces Cd uptake by edible amaranth (Amaranthus mangostanus L.) via competition for Ca channels[J]. Ecotoxicol Environ Saf,2014,105:59-64.
    [48] Nakanishi H,Ogawa I,Ishimaru Y,,et al.Iron deficiency enhance cad-mium uptake and translocation mediated by Fe2+ transporters Os IRT1 and Os IRT2 in rice[J]. Soil Sci Plant Nutr, 2006,52(4):464-469.
    [49] 余丹萍,李取生,王立立,等.缺Fe/Zn及盐胁迫下苋菜对Cd及矿质元素的吸收与IRT1表达的关系[J].农业环境科学学报,2016,35(2):234-239.
    [50] 付宝荣,李法云,臧树良,等.锌营养条件下镉污染对小麦生理特性的影响[J].辽宁大学学报(自然科学版),2000,(4):366-370.
    [51] 贺晓燕,龚义勤,徐良,等.萝卜铁转运蛋白基因RsIRT1分子特征分析[J].南京农业大学学报,2013,36(6):13-18.
    [52] Brunner I,Luster J,Günthardt G,et al.Heavy metal accumulation and phytostabilisation potential of tree fine roots in a contaminated soil[J]. Environ. Pollut,2008,152:559-568.
    [53] 徐劼.茶树(Camellia sinensis L.)对铅的吸收累积及耐性机制研究[D].杭州:浙江大学,2011.
    [54] Krzeslowska M.The cell wall in plant cell response to trace metals: polysaccharide remodeling and its role in defense strategy[J]. Acta physiologiae plantarum,2011,33(1):35-51.
    [55] Lu L Li, Tian S K, Yang X E, et al. Enhanced root-to-shoot translocation of cadmium in the hyperaccumulating ecotype of Sedum alfredii[J]. Journal of Experimental Botany,2008,59(11):3203-3213.
    [56] Michio K. Application of sugarbeet pure and crude extracts containing glycinebetaine affects root growth, yield, and photosynthesis of tomato grown during summer[J]. Scientia Horticulturae,2013,152:9-15.
    [57] 王晓晓. 高温胁迫下甜菜碱对PSⅡ修复循环保护机理研究[D].泰安:山东农业大学,2016.
    [58] Mostafakamal Shams,Ertan Yildirim,Melek Ekinci,et al.Exogenously applied glycine betaine regulates some chemical characteristics and antioxidative defence systems in lettuce under salt stress[J].Horticulture Environment and Biotechnology. 2016, 57(3):225-231.
    [59] 马明臻.干旱胁迫下外源甜菜碱对苹果叶片光合及相关特性的影响[J].中国南方果树,2016,45(5):113-116,120.
    [60] 杨晓云,宋涛,刘辉,等.外源甜菜碱对NaCl胁迫下玉米幼苗生长和叶绿素含量的影响[J].湖北农业科学,2017,56(5):830-833,875.
    [61] 雷永康,徐智敏,李取生,等.外源甜菜碱对苋菜抗盐性与累积重金属特性的影响[J].环境科学学报,2015,35(5):1587-1595.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700