建筑结构钢超低周疲劳断裂破坏的损伤预测模型
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A DAMAGE PREDICTION MODEL FOR ULTRA LOW CYCLE FATIGUE FAILURE OF BUILDING STRUCTURAL STEEL
  • 作者:黄学伟 ; 张旭 ; 苗同臣
  • 英文作者:HUANG Xue-wei;ZHANG Xu;MIAO Tong-chen;School of Mechanics & Engineering Science, Zhengzhou University;
  • 关键词:建筑结构钢 ; 超低周疲劳 ; 损伤模型 ; 有限元分析 ; 梁柱焊接节点
  • 英文关键词:building structural steel;;ultra low cycle fatigue;;damage model;;finite element analysis;;beam to column welded joints
  • 中文刊名:GCLX
  • 英文刊名:Engineering Mechanics
  • 机构:郑州大学力学与工程科学学院;
  • 出版日期:2017-06-25
  • 出版单位:工程力学
  • 年:2017
  • 期:v.34
  • 基金:中国博士后科学基金项目(2016M602258);; 河南省基础与前沿技术研究计划项目(52110599)
  • 语种:中文;
  • 页:GCLX201706013
  • 页数:8
  • CN:06
  • ISSN:11-2595/O3
  • 分类号:112-119
摘要
针对地震作用下建筑结构钢的超低周疲劳断裂问题,在单调加载损伤模型的基础上,提出了一种适用于超低周循环加载情况下的损伤预测模型,并借助ABAQUS软件的用户自定义材料子程序模块,将建立的损伤预测模型引入到有限元分析程序中。然后分别依据建筑钢结构母材、热影响区和焊缝金属缺口试样的单调加载和超低周循环加载试验,标定了材料的损伤模型参数,并对比分析了缺口圆棒试样在不同加载方式下的损伤演化规律,损伤分析结果表明缺口圆棒试样的裂纹都产生于试样截面中心处,这与试验结果一致。最后,以钢框架梁柱焊接节点为研究对象,应用损伤模型分析了节点危险部位的损伤演化规律,数值模拟了节点的超低周疲劳断裂破坏过程,最终得到节点的疲劳寿命与试验结果吻合良好。
        Based on the damage model under a monotonic loading condition, a new damage model is developed to predict the ultra low cycle fatigue failure of building structural steel subjected to seismic actions. The damage prediction model was implemented in commercial finite element software ABAQUS by using the user material subroutine. Then, parameters used in the damage model of building structural steel base metal, heat affected zone and weld metal were calibrated respectively through monotonic loading tests and ultra low cyclic loading tests of notched coupon specimens, in addition, the damage evolution laws at the center of notched specimen under different loading conditions were compared. It can be observed from the comparison that crack always initiates in the center of specimens, which is consisted with the test results. Finally, the damage model were applied to investigate the damage evolution of beam to column welded joints under ultra low cyclic loading history. The fracture process was simulated and the number of cycles to fracture was predicted, which agrees well with the experimental results.
引文
[1]Kanvinde A M,Deierlein G G.Cyclic void growth model to assess ductile fracture initiation in structural steels due to ultra low cycle fatigue[J].Journal of Engineering Mechanics,2007,133(6):701―712.
    [2]Bleck W,Dahl W,Nonn A,et al.Numerical and experimental analyses of damage behaviour of steel moment connection[J].Engineering Fracture Mechanics,2009,76(10):1531―1547.
    [3]Zhou H,Wang Y Q,Shi Y J,et al.Extremely low cycle fatigue prediction of steel beam-to-column connection by using a micro-mechanics based fracture model[J].International Journal of Fatigue,2013,48:90―100.
    [4]Xue L.A unified expression for low cycle fatigue and extremely low cycle fatigue and its implication for monotonic loading[J].International Journal of Fatigue,2008,30(10):1691―1698.
    [5]王伟,廖芳芳,陈以一.基于微观机制的钢结构节点延性断裂预测与裂后路径分析[J].工程力学,2014,31(3):101―108.Wang Wei,Liao Fangfang,Chen Yiyi.Ductile fracture prediction and post-fracture path tracing of steel connections based on micromechanics-based fracture criteria[J].Engineering Mechanics,2014,31(3):101―108.(in Chinese)
    [6]周天华,李文超,管宇,等.基于应力三轴度的钢框架循环加载损伤分析[J].工程力学,2014,31(7):146―154.Zhou Tianhua,Li Wenchao,Guan Yu,et al.Damage analysis of steel frames under cyclic loading based on stress triaxiality[J].Engineering Mechanics,2014,31(7):146―154.(in Chinese)
    [7]Manson S S.Behavior of materials under conditions of thermal stress[C].Ann Arbor,USA:University of Michigan,1953:1―37.
    [8]Coffin Jr L F.A study of the effects of cyclic thermal stresses on a ductile metal[J].Transactions of the American Society of Mechanical Engineers,1954,76(6):931―950.
    [9]Shimada K,Komotori J,Shimizu M.Fracture model transition and damage in extremely low cycle fatigue[M]//Rie K T.Low Cycle Fatigue and elasto-Plastic Behaviour of Materials.Volume 2,Berlin Germany:Springer Netherlands,1987:680―686.
    [10]Nip K H,Gardner L,Davies C M,et al.Extremely low cycle fatigue tests on structural carbon steel and stainless steel[J].Journal of Constructional Steel Research,2010,66(1):96―110.
    [11]Rice J R,Tracey D M.On the ductile enlargement of voids in triaxial stress fields[J].Journal of the Mechanics and Physics of Solids,1969,17(3):201―217.
    [12]Hancock J W,Mackenzie A C.On the mechanisms of ductile failure in high-strength steels subjected to multi-axial stress-states[J].Journal of the Mechanics and Physics of Solids,1976,24(2):147―160.
    [13]Kuwamura H,Yamamoto K.Ductile crack as trigger of brittle fracture in steel[J].International Journal of Structural Engineering,1997,123(6):729―735.
    [14]Hommel J H,Meschke G.A hybrid modeling concept for ultra low cycle fatigue of metallic structures based on micropore damage and unit cell models[J].International Journal of Fatigue,2010,32(12):1885―1894.
    [15]Tong L W,Huang X W,Zhou F,et al.Experimental and numerical investigations on extremely-low-cycle fatigue fracture behavior of steel welded joints[J].Journal of Constructional Steel Research,2016,119:98―112.
    [16]Liao F F,Wang W,Chen Y Y.Parameter calibrations and application of micromechanical fracture models of structural steels[J].Structural Engineering and Mechanics,2012,42(2):153―174.
    [17]Huang X W,Tong L W,Zhou F,et al.Prediction of fracture behavior of beam-to-column welded joints using micromechanics damage model[J].Journal of Constructional Steel Research,2013,85:60―72.
    [18]GB 50011-2010,建筑抗震设计规范[S].北京:中国建筑工业出版社,2010.GB 50011-2010,Code for seismic design of buildings[S].Beijing:China Architecture&Building Press,2010.(in Chinese)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700