脉冲电流作用下TiAl合金凝固组织演变及形成机理
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Microstructural Evolution and Mechanism of Solidified TiAl Alloy Applied Electric Current Pulse
  • 作者:陈占兴 ; 丁宏升 ; 陈瑞润 ; 郭景杰 ; 傅恒志
  • 英文作者:CHEN Zhanxing;DING Hongsheng;CHEN Ruirun;GUO Jingjie;FU Hengzhi;National Key Laboratory for Precision Hot Processing of Metals, School of Materials Science and Engineering,Harbin Institute of Technology;
  • 关键词:脉冲电流 ; TiAl合金 ; 组织演变 ; 片层取向
  • 英文关键词:electric current pulse;;TiAl alloy;;microstructural evolution;;lamellar orientation
  • 中文刊名:JSXB
  • 英文刊名:Acta Metallurgica Sinica
  • 机构:哈尔滨工业大学材料科学与工程学院金属精密热加工国家级重点实验室;
  • 出版日期:2019-05-11
  • 出版单位:金属学报
  • 年:2019
  • 期:v.55
  • 基金:国家自然科学基金项目Nos.51171053、51471062和51671072~~
  • 语种:中文;
  • 页:JSXB201905007
  • 页数:8
  • CN:05
  • ISSN:21-1139/TG
  • 分类号:59-66
摘要
利用OM和TEM研究了脉冲电流作用下Ti-48Al-2Cr-2Nb合金的凝固组织,并分析了其微观组织演变及形成机理。结果表明,脉冲电流细化了TiAl合金的一次枝晶臂间距、柱状晶尺寸和片层间距。未加载电流的TiAl合金凝固的初生相为α相,TiAl合金的片层取向与柱状晶生长方向夹角较大,甚至垂直于生长方向。脉冲电流作用导致枝晶发生熔断和破碎,促进了β枝晶相的析出及增多,片层取向与晶体生长方向夹角较小或成45°生长的片层进一步增多。脉冲电流降低了固-液相之间的自由能及原子扩散激活能,减少形核位垒及晶核的形核功,从而在一定程度上促进原子扩散,增大了形核率,细化一次枝晶臂间距及柱状晶;初生相的转变析出及其特殊的位向关系是片层取向变化的主要原因。
        As a new type of lightweight and high temperature structural material, Ti Al alloy has become the most ideal candidate in the fields of aerospace, military and civil products, and it has a good perspective in the industrialization. Refining and improving the microstructure of TiAl alloys has higher theoretical significance and engineering value. In this work, the solidified Ti-48Al-2Cr-2 Nb alloy applied electric current pulse is studied, and its microstructural evolution and mechanism are analyzed. The results show that the electric current pulse refines the primary dendrite arm spacing, columnar crystal size and interlamellar spacing of the Ti-48Al-2Cr-2 Nb alloy. The primary phase is α without electric current pulse, the angle of the Ti-48Al-2Cr-2Nb alloy that between the lamellar orientation and the growth direction is usually bigger, even perpendicular to the growth direction approximately. The applied electric current pulse causes the dendrite to melt and break, and promotes the occurrence and increase of the primary β phase, the lamellae orientation having a small angle or 45° between the growth direction is further increasing. The electric current pulse reduces the solid-liquid phase free energy and atomic diffusion activation energy, reduces the nucleation barrier and the critical nucleation energy, thereby atomic diffusion and the crystallization nucleation is promoted to a certain extent, the primary dendritic spacing and columnar crystals are remarkably refined. The electric current pulse causes the transformation of the primary phase and its corresponding crystal orientation relationship is the main reason for the change of lamellar orientation.
引文
[1]Asai S.Recent development and prospect of electromagnetic processing of materials[J].Sci.Technol.Adv.Mater.,2000,1:191
    [2]Asai S.Electromagnetic Processing of Materials[M].Dordrecht:Springer,2012:87
    [3]Wang R Z,Qi J G,Wang B,et al.Solidification behavior and crystal growth mechanism of aluminum under electric pulse[J].J.Mater.Process.Technol.,2016,237:235
    [4]Tang Y F,Qiu S,Miao Q,et al.Fabrication of lamellar porous alumina with axisymmetric structure by directional solidification with applied electric and magnetic fields[J].J.Eur.Ceram.Soc.,2016,36:1233
    [5]Li C S,Hu S D,Ren Z M,et al.Effect of the simultaneous application of a high static magnetic field and a low alternating current on grain structure and grain boundary of pure aluminum[J].J.Mater.Sci.Technol.,2018,34:2431
    [6]Li Y Z,Mangelinck-No?l N,Zimmermann G,et al.Effect of solidification conditions and surface pores on the microstructure and columnar-to-equiaxed transition in solidification under microgravity[J].J.Alloys Compd.,2018,749:344
    [7]Ruan Y,Wang Q Q,Chang S Y,et al.Structural evolution and micromechanical properties of ternary Al-Ag-Ge alloy solidified under microgravity condition[J].Acta Mater.,2017,141:456
    [8]Xuan Y,Nastac L.The role of ultrasonic cavitation in refining the microstructure of aluminum based nanocomposites during the solidification process[J].Ultrasonics,2018,83:94
    [9]Chen Z X,Ding H S,Chen R R,et al.An innovative method for the microstructural modification of TiAl alloy solidified via direct electric current application[J].J.Mater.Sci.Technol.,2019,35:23
    [10]Li J,Ma J H,Song C J,et al.Columnar to equiaxed transition during solidification of small ingot by using electric current pulse[J].J.Iron Steel Res.,Int.,2009,16:7
    [11]Li J Y,Ni P,Wang L,et al.Influence of direct electric current on solidification process of Al-Si alloy[J].Mater.Sci.Semicond.Process.,2017,61:79
    [12]Yang J R,Chen R R,Guo J J,et al.Temperature distribution in bottomless electromagnetic cold crucible applied to directional solidification[J].Int.J.Heat Mass Transfer,2016,100:131
    [13]Yang J R,Chen R R,Su Y Q,et al.Optimization of electromagnetic energy in cold crucible used for directional solidification of Ti Al alloy[J].Energy,2018,161:143
    [14]Erdely P,Staron P,Maawad E,et al.Design and control of microstructure and texture by thermomechanical processing of a multiphase Ti Al alloy[J].Mater.Des.,2017,131:286
    [15]Wang X D,Luo R C,Liu F,et al.Characterization of Gd-rich precipitates in a fully lamellar TiAl alloy[J].Scr.Mater.,2017,137:50
    [16]Zhang T B,Wu Z E,Hu R,et al.Influence of nitrogen on the microstructure and solidification behavior of high Nb containing TiAl alloys[J].Mater.Des.,2016,103:100
    [17]Zollinger J,Lapin J,Daloz D,et al.Influence of oxygen on solidification behaviour of cast TiAl-based alloys[J].Intermetallics,2007,15:1343
    [18]Jung I S,Jang H S,Oh M H,et al.Microstructure control of TiAl alloys containingβstabilizers by directional solidification[J].Mater.Sci.Eng.,2002,A329-331:13
    [19]Chen Z X,Ding H S,Liu S Q,et al.Effects of direct current on microstructure and properties of Ti-48Al-2Cr-2Nb alloy[J].Acta Metall.Sin.,2017,53:583(陈占兴,丁宏升,刘石球等.直流电流对Ti-48Al-2Cr-2Nb合金组织和性能的影响[J].金属学报,2017,53:583)
    [20]Li X Z,Fan J L,Su Y Q,et al.Lamellar orientation and growth direction ofαphase in directionally solidified Ti-46Al-0.5W-0.5Si alloy[J].Intermetallics,2012,27:38
    [21]Barnak J P,Sprecher A F,Conrad H.Colony(grain)size reduction in eutectic Pb-Sn castings by electroplusing[J].Scr.Metall.Mater.,1995,32:879
    [22]Zhai Q J.Foundamentals of Structure Refinement Technology for Metal Solidification[M].Beijing:Science Press,2018:145(翟启杰.金属凝固组织细化技术基础[M].北京:科学出版社,2018:145)
    [23]Gao M,He G H,Yang F,et al.Effect of electric current pulse on tensile strength and elongation of casting ZA27 alloy[J].Mater.Sci.Eng.,2002,A337:110
    [24]Nakada M,Shiohara Y,Flemings M C.Modification of solidification structures by pulse electric discharging[J].ISIJ Int.,1990,30:27
    [25]Zhang W,Sui M L,Zhou Y Z,et al.Electropulsing-induced evolution of microstructures in materials[J].Acta Metall.Sin.,2003,39:1009(张伟,隋曼龄,周亦胄等.高密度电脉冲下材料微观结构的演变[J].金属学报,2003,39:1009)
    [26]Tang J C,Huang B Y,Zhou K C,et al.Factors affecting the lamellar spacing in two-phase TiAl alloys with fully lamellar microstructures[J].Mater.Res.Bull.,2001,36:1737
    [27]Lapin J,Ondrú?L',Nazmy M.Directional solidification of intermetallic Ti-46Al-2W-0.5Si alloy in alumina moulds[J].Intermetallics,2002,10:1019
    [28]Clemens H,Bartels A,Bystrzanowski S,et al.Grain refinement inγ-TiAl-based alloys by solid state phase transformations[J].Intermetallics,2006,14:1380
    [29]Inui H,Oh M H,Nakamura A,et al.Room-temperature tensile deformation of polysynthetically twinned(PST)crystals of TiAl[J].Acta Metall.Mater.,1992,40:3095
    [30]Jung I S,Oh M H,Park N J,et al.Lamellar boundary alignment of DS-processed TiAl-W alloys by a solidification procedure[J].Met.Mater.Int.,2007,13:455

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700