翼身融合布局低速风洞试验研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Low Speed Wind Tunnel Test of a Blended Wing Body Configuration
  • 作者:李沛峰 ; 张彬乾 ; 陶于金 ; 李栋
  • 英文作者:Li Peifeng;Zhang Binqian;Tao Yujin;Li Dong;365th Institute,Northwestern Polytechnical University;School of Aeronautics,Northwestern Polytechnical University;
  • 关键词:翼身融合布局 ; 风洞试验 ; 流动机理 ; 发动机短舱 ; 计算流体力学
  • 英文关键词:blended wing body(BWB);;wind tunnel test;;flow mechanism;;nacelle;;CFD
  • 中文刊名:HKGC
  • 英文刊名:Advances in Aeronautical Science and Engineering
  • 机构:西北工业大学第365研究所;西北工业大学航空学院;
  • 出版日期:2019-02-28
  • 出版单位:航空工程进展
  • 年:2019
  • 期:v.10;No.37
  • 语种:中文;
  • 页:HKGC201901005
  • 页数:7
  • CN:01
  • ISSN:61-1479/V
  • 分类号:33-39
摘要
翼身融合布局(BWB)综合性能突出,是未来民用航空领域飞行器发展的必然趋势,研究BWB布局的气动特点及流动机理,对开展BWB布局设计具有重要的支撑作用。采用测力、丝线流动显示的风洞试验方法并辅以CFD方法,开展300座级BWB布局(BWB-1)低速气动特性、流动机理及通气发动机短舱影响研究。结果表明:与Early BWB、N2A布局相比,BWB-1具有更好的低速纵向气动性能,具有横向静稳定、航向静不稳定量值较小,航向增稳与控制难度较小等优点;揭示了布局的流动发展过程及具有和缓失速特性的物理原因;通气发动机短舱对提高最大升力及增加航向静稳定性有利,对横向静稳定性影响较小,但使得阻力和低头力矩增加;CFD纵向计算结果与试验基本一致,验证了CFD方法的有效性。
        Blended wing body(BWB)configuration will be the inevitable trend of the aircraft using in the future civil aviation for its excellent performance.Aerodynamic and flow mechanism investigations of the BWB configuration will provide important support for its design.Wind tunnel tests include force measurements and tuft visualization,in addition to computation fluid dynamics(CFD)simulation,are used to investigate the low speed aerodynamic characteristics and flow mechanism and effects of flow-through nacelles for a 300-passenger BWB configuration(BWB-1).Test results show that longitudinal aerodynamic characteristics of BWB-1 are better than those of the Early BWB or N2 A.BWB-1 possesses lateral static stability and directional static instability,however,low value of the directional instability degrades the difficulty in directional stability augmentation and control.Investigation also reveals flow development and physical mechanism of a mild stall characteristic of the configuration.Flow-through nacelles are beneficial to both maximum lift and directional stability,and have minimal effects on lateral stability;however,drag and pitch-down moment are increased.Results from CFD simulation show good agreement with tunnel test data,which demonstrate the validation of the CFD method.
引文
[1]Graham W R,Hall C A,Morales M V.The potential of future aircraft technology for noise and pollutant emissions reduction[J].Transport Policy,2014,34:36-51.
    [2]Okonkwo P,Smith H.Review of evolving trends in blended wing body aircraft design[J].Progress in Aerospace Sciences,2016,82:1-23.
    [3]Li Peifeng,Zhang Binqian,Chen Yingchun,et al.Aerodynamic design methodology for blended wing body transport[J].Chinese Journal of Aeronautics,2012,25(4):508-516.
    [4]蒋瑾,钟伯文,符松.翼身融合布局飞机总体参数对气动性能的影响[J].航空学报,2016,37(1):278-289.Jiang Jin,Zhong Bowen,Fu Song.Influence of overall configuration parameters on aerodynamic characteristics of a blended-wing-body aircraft[J].Acta Aeronautica et Astronautica Sinica,2016,37(1):278-289.(in Chinese)
    [5]索欣诗,陈文达,余雄庆.翼身融合布局大型客机的重心分析[J].航空计算技术,2017,47(4):67-71.Suo Xinshi,Chen Wenda,Yu Xiongqing.Analysis on center of gravity of blended-wing-body aircraft[J].Aeronautical Computing Technique,2017,47(4):67-71.(in Chinese)
    [6]杨小川,王运涛,孙岩,等.有无涵道动力下的类BWB低速布局气动特性研究[J].航空工程进展,2018,9(1):43-52.Yang Xiaochuan,Wang Yuntao,Sun Yan,et al.Research on aerodynamic characteristics of low-speed aerodynamic configuration of BWB analog with and without ducted fan[J].Advances in Aeronautical Science and Engineering,2018,9(1):43-52.(in Chinese)
    [7]Liebeck R H.Design of the blended wing body subsonic transport[J].Journal of Aircraft,2004,41(1):10-25.
    [8]Pambagjo I E,Nakahashi K,Obayashi S,et al.Aerodynamic design of a medium size blended-wing-body airplane[R].AIAA-2001-0129,2001.
    [9]Peigin S,Epstein B.Computational fluid dynamics driven optimization of blended wing body aircraft[J].Journal of Aircraft,2006,44(11):2736-2745.
    [10]Osusky L,Buckley H,Reist T,et al.Drag minimization based on the navier-stokes equations using a newton-krylov approach[J].AIAA Journal,2015,53(6):1555-1577.
    [11]Re R J.Longitudinal aerodynamic characteristics and wing pressure distributions of a blended-wing-body configuration at low and high Reynolds numbers[R].NASA-TM-2005-213754,2005.
    [12]Mialon B,Hepperle M.Flying wing aerodynamics studies at ONERA and DLR[R].CEAS Katnet Conference on Key Aerodynamic Technologies,2005.
    [13]Vicroy D D.Blended wing body low speed flight dynamics:summary of ground tests and sample results[R].AIAA-2009-933,2009.
    [14]Gatlin G M,Vicroy D D,Carter M B.Experimental investigation of the low-speed aerodynamic characteristics of a 5.8-percent scale hybrid wing body configuration[R].AIAA-2012-2669,2012.
    [15]Vicroy D D,Gatlin G M,Jenkins L N,et al.Low speed aerodynamic investigations of a hybrid wing body configuration[R].AIAA-2014-2563,2014.
    [16]Vicroy D D,Dickey E,Princen N,et al.Overview of low speed aerodynamic tests on a 5.75%scale blended wing body twin jet configuration[R].AIAA-2016-0009,2016.
    [17]Schuh M J,Garcia J A,Carter M B,et al.NASA environmentally responsible aviation hybrid wing body wind tunnel CFD[R].AIAA-2016-0263,2016.
    [18]郗忠祥,谢亚君,郭琦,等.NF-3风洞设计特点[J].气动实验与测量控制,1996,10(4):40-49.Xi Zhongxiang,Xie Yajun,Guo Qi,et al.The design characteristics of NF-3 wind tunnel[J].Aerodynamic Experiment and Measurement Control,1996,10(4):40-49.(in Chinese)
    [19]李路路,张彬乾,李沛峰,等.大型客机无尾布局航向组合舵面控制技术研究[J].飞行力学,2013,31(5):450-454.Li Lulu,Zhang Binqian,Li Peifeng,et al.Research on control technology of combined control surface for large tailless civil aircraft[J].Fight Dynamics,2013,31(5):450-454.(in Chinese)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700