纳米给药系统中药物体外释放度测定方法及体内外相关性评价研究进展
详细信息    查看全文 | 推荐本文 |
  • 作者:刘元芬 ; 王亚晶 ; 周咏梅 ; 陈海燕
  • 关键词:纳米给药系统 ; 药物体外释放 ; 体内外相关性
  • 中文刊名:ZGYA
  • 英文刊名:China Pharmacy
  • 机构:江苏卫生健康职业学院药学院;常州大学制药与生命科学学院;
  • 出版日期:2019-02-28
  • 出版单位:中国药房
  • 年:2019
  • 期:v.30;No.646
  • 基金:国家自然科学基金资助项目(No.81803471);; 江苏省卫生和计划生育委员会科研项目(No.Z201508);; 南京市浦口区科技发展社会事业项目(No.2017-26)
  • 语种:中文;
  • 页:ZGYA201904023
  • 页数:6
  • CN:04
  • ISSN:50-1055/R
  • 分类号:121-126
摘要
目的:为纳米给药系统中药物体外释放度测定方法及体内外相关性评价提供参考。方法:以"纳米给药系统""体外药物释放""体内外相关性""Nanoparticles""Drug release""in vitro-in vivo correlation"等为关键词,在中国知网、维普、PubMed、Elsevier等数据库中组合查询2001年-2018年6月发表的相关文献,从纳米给药系统药物体外释放测定的挑战、药物体外释放度测定的主要方法、体外释放度的数学模型拟合以及体外释放-体内行为相关性研究等3个方面进行归纳和总结。结果与结论:共检索到相关文献4 318篇,其中有效文献41篇。目前纳米给药系统中药物体外释放度研究面临的挑战主要来源于纳米粒径的多样性和不均匀性、体内释放过程的多重性以及在体内易受到各种蛋白的影响等。纳米给药系统中药物体外释放度的主要测定方法有透析法、离心法、流通池法、凝胶法、加压超滤法、扩散池法和原位法等,各有一定的优缺点。目前针对纳米给药系统中药物的体外释放动力学数学模型进行系统研究的文献较少,对其进行体外释放-体内行为相关性研究的文献也较少。今后可通过在药物体外释放测定的介质溶液中引入体内蛋白、在释放测定过程中设计模拟纳米给药系统在体内的分布特性、控制测定装置孔隙大小等方面减小对粒径的影响,使纳米给药系统中药物体外释放度的测定方法更加完善;通过进一步体外释药模型拟合、体内外相关性研究,使纳米给药系统中药物体外释放更好地预测其体内行为。
        
引文
[1]NOTHNAGEL L,WACKER MG.How to measure release from nanosized carriers?[J].Eur J Pharm Sci,2018DOI:10.1016/j.ejps.2018.05.004.
    [2]PEER D,KARP JM,HONG S,et al.Nanocarriers as an emerging platform for cancer therapy[J].Nat Nanotechnol,2007,2(12):751-760.
    [3]王岚,刘颖,冯年平.脂质纳米粒给药系统体外释放方法研究进展[J].中国实验方剂学杂志,2013,19(18):350-356.
    [4]DOKOUMETZIDIS A,MACHERAS P.A century of dissolution research:from Noyes and Whitney to the biopharmaceutics classification system[J].Int J Pharm,2006,321(1/2):1-11.
    [5]D’SOUZA S.A review of in vitro drug release test methods for nano-sized dosage forms[J].Adv in Pharm,2014.DOI:10.1155/2014/304757.
    [6]谢元彪,岳鹏飞,但济修,等.纳米制剂体外释放度评价方法的研究进展[J].中国药学杂志,2016,51(11):861-866.
    [7]PENG Q,WEI XQ,YANG Q,et al.Enhanced biostability of nanoparticle-based drug delivery systems by albumin corona[J].Nanomedicine:Lond,2015,10(2):205-214.
    [8]SHEN J,BURGESS DJ.In vitro dissolution testing strategies for nanoparticulate drug delivery systems:recent developments and challenges[J].Drug Deliv Transl Res,2013,3(5):409-415.
    [9]JAIN P,PAWAR RS,PANDEY RS,et al.In-vitro in-vivo correlation(IVIVC)in nanomedicine:is protein corona the missing link?[J].Biotechnol Adv,2017,35(7):889-904.
    [10]POURJAVADI A,TEHRANI ZM,MAHMOUDI N.The effect of protein corona on doxorubicin release from the magnetic mesoporous silica nanoparticles with polyethylene glycol coating[J].J Nanopart Res,2015,17(4):197-211.
    [11]CARACCIOLO G.Liposome-protein corona in a physiological environment:challenges and opportunities for targeted delivery of nanomedicines[J].Nanomedicine,2015,11(3):543-557.
    [12]CHO EJ,HOLBACK H,LIU KC,et al.Nanoparticle characterization:state of the art,challenges,and emerging technologies[J].Mol Pharm,2013,10(6):2093-2110.
    [13]ZENG L,AN L,WU X.Modeling drug-carrier interaction in the drug release from nanocarriers[J].J Drug Deliv,2011.DOI:10.1155/2011/370308.
    [14]NIE S.Understanding and overcoming major barriers in cancer nanomedicine[J].Nanomedicine:Lond,2010,5(4):523-528.
    [15]ZAMBITO Y,PEDRESCHI E,DI COLO G.Is dialysis a reliable method for studying drug release from nanoparticulate systems?A case study[J].Int J Pharm,2012,434(1/2):28-34.
    [16]SEZER AD,AKBU?A J,BA?AL.In vitro evaluation of enrofloxacin-loaded MLV liposomes[J].Drug Deliv,2007,14(1):47-53.
    [17]王智勇,张金录,陈岩,等.3种香豆素6纳米微粒的制备及其体外释药特性研究[J].中国药房,2012,23(45):4266-4268.
    [18]ABDEL-MOTTALEB MM,NEUMANN D,LAMPRE-CHT A.In vitro drug release mechanism from lipid nanocapsules(LNC)[J].Int J Pharm,2010,390(2):208-213.
    [19]ABDEL-MOTTALEB MM,LAMPRECHT A.Standardized in vitro drug release test for colloidal drug carriers using modified USP dissolution apparatusⅠ[J].Drug Dev Ind Pharm,2011,37(2):178-184.
    [20]MODI S,ANDERSON BD.Determination of drug release kinetics from nanoparticles:overcoming pitfalls of the dynamic dialysis method[J].Mol Pharm,2013,10(8):3076-3089.
    [21]XU X,KHAN MA,BURGESS DJ.A two-stage reverse dialysis in vitro dissolution testing method for passive targeted liposomes[J].Int J Pharm,2012,426(1/2):211-218.
    [22]WANG JX,SUN X,ZHANG ZR.Enhanced brain targeting by synthesis of 3′,5′-dioctanoyl-5-fluoro-2′-deoxyuridine and incorporation into solid lipid nanoparticles[J].Eur J Pharm Biopharm,2002,54(3):285-290.
    [23]AMOOZGAR Z,PARK J,LIN Q,et al.Low molecularweight chitosan as a pH-sensitive stealth coating for tumor-specific drug delivery[J].Mol Pharm,2012,9(5):1262-1270.
    [24]ABOUELMAGD SA,SUN B,CHANG AC,et al.Release kinetics study of poorly water-soluble drugs from nanoparticles:are we doing it right?[J].Mol Pharm,2015,12(3):997-1003.
    [25]D’SOUZA SS,DELUCA PP.Methods to assess in vitro drug release from injectable polymeric particulate systems[J].Pharm Res,2006,23(3):460-474.
    [26]SIEVENS-FIGUEROA L,PANDYA N,BHAKAY A,et al.Using USPⅠand USPⅣfor discriminating dissolution rates of nano-and microparticle-loaded pharmaceutical stripfilms[J].AAPS Pharm Sci Tech,2012,13(4):1473-1482.
    [27]HENG D,CUTLER DJ,CHAN HK,et al.What is a suitable dissolution method for drug nanoparticles?[J].Pharm Res,2008,25(7):1696-1701.
    [28]SUN B,TAHA MS,RAMSEY B,et al.Intraperitoneal chemotherapy of ovarian cancer by hydrogel depot of paclitaxel nanocrystals[J].J Control Release,2016,235(8):91-98.
    [29]BOYD BJ.Characterisation of drug release from cubosomes using the pressure ultrafiltration method[J].Int JPharm,2003,260(2):239-247.
    [30]WALLACE SJ,LI J,NATION RL,et al.Drug release from nanomedicines:selection of appropriate encapsulation and release methodology[J].Drug Deliv Transl Res,2012,2(4):284-292.
    [31]ORASUGH JT,SAHA NR,SARKAR G,et al.Synthesis of methylcellulose/cellulose nano-crystals nanocomposites:material properties and study of sustained release of ketorolac tromethamine[J].Carbohydr Polym,2018,188(5):168-180.
    [32]ANDREANI T,DE SOUZA AL,KIILL CP,et al.Preparation and characterization of PEG-coated silica nanoparticles for oral insulin delivery[J].Int J Pharm,2014,473(1/2):627-635.
    [33]CRISP MT,TUCKER CJ,ROGERS TL,et al.Turbidimetric measurement and prediction of dissolution rates of poorly soluble drug nanocrystals[J].J Control Release,2007,117(3):351-359.
    [34]ANHALT K,GEISSLER S,HARMS M,et al.Development of a new method to assess nanocrystal dissolution based on light scattering[J].Pharm Res,2012,29(10):2887-2901.
    [35]AKHLAGHI SP,TIONG D,BERRY RM,et al.Comparative release studies of two cationic model drugs from different cellulose nanocrystal derivatives[J].Eur J Pharm Biopharm,2014,88(1):207-215.
    [36]BARZEGAR-JALALI M,ADIBKIA K,VALIZADEH H,et al.Kinetic analysis of drug release from nanoparticles[J].J Pharm Pharm Sci,2008,11(1):167-177.
    [37]ZENG L,WU X.Modeling the sustained release of lipophilic drugs from liposomes[J].Applied Physics Letters,2010,97(7):332-347.
    [38]包圆圆,张琪,吴闻哲.体内体外相关性的评价方法及应用[J].中国医药工业杂志,2017,48(5):638-643.
    [39]KUMAR R,NAGARWAL RC,DHANAWAT M,et al.Invitro and in-vivo study of indomethacin loaded gelatin nanoparticles[J].J Biomed Nanotechnol,2011,7(3):325-333.
    [40]TIWARI R,PATHAK K.Nanostructured lipid carrier versus solid lipid nanoparticles of simvastatin:comparative analysis of characteristics,pharmacokinetics and tissue uptake[J].Int J Pharm,2011,415(1/2):232-243.
    [41]SIEWERT M,DRESSMAN J,BROWN CK,et al.FIP/AAPS guidelines to dissolution/in vitro release testing of novel/special dosage forms[J].AAPS Pharm Sci Tech,2003,4(1):863-869.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700