Recent Advances and Progress for the Fabrication and Surface Modification of AIE-active Organic-inorganic Luminescent Composites
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Recent Advances and Progress for the Fabrication and Surface Modification of AIE-active Organic-inorganic Luminescent Composites
  • 作者:Liu-Cheng ; Mao ; Xiao-Yong ; Zhang ; Yen ; Wei
  • 英文作者:Liu-Cheng Mao;Xiao-Yong Zhang;Yen Wei;Department of Chemistry,Nanchang University;Department of Chemistry and the Tsinghua Center for Frontier Polymer Research,Tsinghua University;Department of Chemistry and Center for Nanotechnology and Institute of Biomedical Technology,Chung-Yuan Christian University;
  • 英文关键词:Aggregation-induced emission;;Organic-inorganic luminescent composites;;Surface modification;;Biomedical applications
  • 中文刊名:GFZK
  • 英文刊名:高分子科学(英文版)
  • 机构:Department of Chemistry,Nanchang University;Department of Chemistry and the Tsinghua Center for Frontier Polymer Research,Tsinghua University;Department of Chemistry and Center for Nanotechnology and Institute of Biomedical Technology,Chung-Yuan Christian University;
  • 出版日期:2019-03-19
  • 出版单位:Chinese Journal of Polymer Science
  • 年:2019
  • 期:v.37
  • 基金:financially supported by the National Natural Science Foundation of China (Nos. 21564006, 21561022, 21644014, 21788102, and 21865016)
  • 语种:英文;
  • 页:GFZK201904004
  • 页数:12
  • CN:04
  • ISSN:11-2015/O6
  • 分类号:56-67
摘要
Organic dyes based hybrid organic-inorganic luminescent nanomaterials with high quantum efficiency, good physical or chemical stability, and favorable biocompatibility, have attracted growing attention recently because of their important applications in the areas of biomedical imaging, chemical sensors, and light-emitting diodes(LEDs). Nevertheless, conventional fluorescence molecules suffer from aggregation-caused quenching(ACQ) when they are doped into inorganic nanomaterials. Aggregation-induced emission(AIE) is an abnormal and intriguing fluorescent phenomenon that has aroused increasing interest for various applications especially in biomedical fields. Compared with conventional organic dyes, the AIE-active molecules will emit more intense fluorescence in their aggregates or solid states. It provides an elegant route to overcome the drawbacks of conventional organic molecules. Over the past few decades, the fabrication and surface modification of various organic-inorganic luminescent composites doped with AIE-active molecules have been reported. Therefore, it is highly desirable to summarize these advances. In this review, recent advances and progress in constructing various AIEgens-doped organic-inorganic hybrid nanocomposites and their subsequent surface modification were summarized. We hope this review could further promote the research of AIE-active functional materials.
        Organic dyes based hybrid organic-inorganic luminescent nanomaterials with high quantum efficiency, good physical or chemical stability, and favorable biocompatibility, have attracted growing attention recently because of their important applications in the areas of biomedical imaging, chemical sensors, and light-emitting diodes(LEDs). Nevertheless, conventional fluorescence molecules suffer from aggregation-caused quenching(ACQ) when they are doped into inorganic nanomaterials. Aggregation-induced emission(AIE) is an abnormal and intriguing fluorescent phenomenon that has aroused increasing interest for various applications especially in biomedical fields. Compared with conventional organic dyes, the AIE-active molecules will emit more intense fluorescence in their aggregates or solid states. It provides an elegant route to overcome the drawbacks of conventional organic molecules. Over the past few decades, the fabrication and surface modification of various organic-inorganic luminescent composites doped with AIE-active molecules have been reported. Therefore, it is highly desirable to summarize these advances. In this review, recent advances and progress in constructing various AIEgens-doped organic-inorganic hybrid nanocomposites and their subsequent surface modification were summarized. We hope this review could further promote the research of AIE-active functional materials.
引文
1 Su,L.; Zhang, X.; Zhang,Y.; Rogach, A. L., Recent progress in quantum dot based white light-emitting devices. In Photoactive semiconductor nanocrystal quantum dots, Springer, 2017, pp123-147.
    2 Zhao, Z.; Lam, J. W.; Tang, B. Z. Tetraphenylethene:A versatile AIE building block for the construction of efficient luminescent materials for organic light-emitting diodes. J. Mater.Chem. 2012, 22, 23726-23740.
    3 Dai, Q.; Duty, C. E.; Hu, M. Z. Semiconductor-nanocrystalsbased white light-emitting diodes. Small 2010, 6, 1577-1588.
    4 Zou, L.; Gu, Z.; Sun, M. Review of the application of quantum dots in the heavy-metal detection. Toxicol Environ. Chem.2015, 97, 477-490.
    5 Jin, R.; Zeng, C.; Zhou, M.; Chen, Y. Atomically precise colloidal metal nanoclusters and nanoparticles:Fundamentals and opportunities. Chem. Rev. 2016, 116, 10346-10413.
    6 Zhang, L.; Wang, E. Metal nanoclusters:New fluorescent probes for sensors and bioimaging. Nano Today 2014, 9,132-157.
    7 Lim, S. Y.; Shen, W.; Gao, Z. Carbon quantum dots and their applications. Chem. Soc. Rev. 2015, 44, 362-381.
    8 Wegner, K. D.; Hildebrandt, N. Quantum dots:Bright and versatile in vitro and in vivo fluorescence imaging biosensors.Chem. Soc. Rev. 2015, 44, 4792-4834.
    9 Tao, Y.; Li, M.; Ren, J.; Qu, X. Metal nanoclusters:Novel probes for diagnostic and therapeutic applications. Chem. Soc.Rev. 2015, 44, 8636-8663.
    10 Huang, H.; Liu, M.; Tuo, X.; Chen, J.; Mao, L.; Wen, Y.; Tian,J.; Zhou, N.; Zhang, X.; Wei, Y. One-step fabrication of PEGylated fluorescent nanodiamonds through the thiol-ene click reaction and their potential for biological imaging. Appl.Surf. Sci. 2018, 439, 1143-1151.
    11 Shi, Y.; Liu, M.; Deng, F.; Zeng, G.; Wan, Q.; Zhang, X.; Wei,Y. Recent progress and development on polymeric nanomaterials for photothermal therapy:A brief overview. J. Mater.Chem. B 2017, 5, 194-206.
    12 Huang, H.; Liu, M.; Jiang, R.; Chen, J.; Mao, L.; Wen, Y.;Tian, J.; Zhou, N.; Zhang, X.; Wei, Y. Facile modification of nanodiamonds with hyperbranched polymers based on supramolecular chemistry and their potential for drug delivery. J.Colloid Interf. Sci. 2018, 513, 198-204.
    13 Smith.A. M.; Duan,H.; Mohs,A. M.; Nie, S. Bioconjugated quantum dots for in vivo molecular and cellular imaging. Adv.Drug Deliver. Rev. 2008, 60, 1226-1240.
    14 Pan, Y.; Chang, T.; Marcq, G.; Liu, C.; Kiss, B.; Rouse, R.;Mach, K. E.; Cheng, Z.; Liao, J. C. In vivo biodistribution and toxicity of intravesical administration of quantum dots for optical molecular imaging of bladder cancer. Sci. Rep. 2017, 7,9309.
    15 Ahmad, A.; Zakaria, N. D.; Razak, K. A. In Photostability effect of silica nanoparticles encapsulated fluorescence dye, AIP.Conf. Proc, AIP Publishing, 2017, p 020010.
    16 Long, Z.; Liu, M.; Jiang, R.; Wan, Q.; Mao, L.; Wan, Y.; Deng,F.; Zhang, X.; Wei, Y. Preparation of water soluble and biocompatible AIE-active fluorescent organic nanoparticles via multicomponent reaction and their biological imaging capability. Chem. Eng.J. 2017, 308, 527-534.
    17 Liu, M.; Ji, J.; Zhang, X.; Zhang, X.; Yang, B.; Deng, F.; Li, Z.;Wang, K.; Yang, Y.; Wei, Y. Self-polymerization of dopamine and polyethyleneimine:Novel fluorescent organic nanoprobes for biological imaging applications. J. Mater. Chem. B 2015, 3,3476-3482.
    18 Shi, Y.; Jiang, R.; Liu,M.; Fu, L.; Zeng,G.; Wan,Q.; Mao, L.;Deng, F.; Zhang, X.; Wei, Y. Facile synthesis of polymeric fluorescent organic nanoparticles based on the self-polymerization of dopamine for biological imaging. Mater. Sci. Eng. C-Mater. 2017, 77, 972-977.
    19 Cao,Q. Y.; Jiang,R.; Liu,M.; Wan,Q.; Xi,D.; Tian,J.;Huang, H.; Wen, Y.; Zhang, X.; Wei, Y. Microwave-assisted multicomponent reactions for rapid synthesis of AIE-active fluorescent polymeric nanoparticles by post-polymerization method. Mater. Sci. Eng. C-Mater. 2017, 80, 578-583.
    20 Cao,Q.-y.; Jiang,R.; Liu,M.; Wan,Q.; Xu,D.; Tian,J.;Huang, H.; Wen, Y.; Zhang, X.; Wei, Y. Preparation of AIEactive fluorescent polymeric nanoparticles through a catalystfree thiol-yne click reaction for bioimaging applications. Mater.Sci. Eng. C-Mater. 2017, 80, 411-416.
    21 Huang,H.; Xu, D.; Liu,M.; Jiang,R.; Mao, L.; Huang,Q.;Wan,Q.; Wen, Y.; Zhang, X.; Wei,Y. Direct encapsulation of AIE-active dye withβcyclodextrin terminated polymers:Selfassembly and biological imaging. Mater. Sci. Eng. C-Mater.2017, 78, 862-867.
    22 Jiang, R.; Liu, H.; Liu, M.; Tian, J.; Huang, Q.; Huang, H.;Wen, Y.; Cao, Q. Y.; Zhang, X.; Wei, Y. A facile one-pot Mannich reaction for the construction of fluorescent polymeric nanoparticles with aggregation-induced emission feature and their biological imaging. Mater. Sci. Eng. C-Mater:2017, 81,416-421.
    23 Jiang, R.; Liu, M.; Li, C.; Huang, Q.; Huang, H.; Wan, Q.;Wen,Y.; Cao, Q. Y.; Zhang,X.; Wei,Y. Facile fabrication of luminescent polymeric nanoparticles containing dynamic linkages via a one-pot multicomponent reaction:Synthesis, aggregation-induced emission and biological imaging. Mater. Sci.Eng. C-Mater. 2017, 80, 708-714.
    24 Tian,J.; Jiang, R.; Gao, P.; Xu,D.; Mao, L.; Zeng,G.; Liu, M.;Deng, F.; Zhang, X.; Wei, Y. Synthesis and cell imaging applications of amphiphilic AIE-active poly(amino acid)s. Mater.Sci. Eng. C-Mater. 2017, 79, 563-569.
    25 Wan, Q.; Liu, M.; Mao, L.; Jiang, R.; Xu, D.; Huang, H.; Dai,Y.; Deng, F.; Zhang, X.; Wei, Y. Preparation of PEGylated polymeric nanoprobes with aggregation-induced emission feature through the combination of chain transfer free radical polymerization and multicomponent reaction:Self-assembly, characterization and biological imaging applications. Mater. Sci.Eng. C-Mater. 2017, 72, 352-358.
    26 Huang,L.; Liu,M.; Huang, H.; Wen,Y.; Zhang,X.; Wei,Y.Recent advances and progress on melanin-like materials and their biomedical applications. Biomacromolecules 2018, 19,1858-1868.
    27 Jiang, R.; Liu, M.; Huang, H.; Mao, L.; Huang, Q.; Wen, Y.;Cao, Q. Y.; Tian, J.; Zhang, X.; Wei, Y. Facile fabrication of organic dyed polymer nanoparticles with aggregation-induced emission using an ultrasound-assisted multicomponent reaction and their biological imaging. J. Colloid Interf. Sci. 2018, 519,137-144.
    28 Zhang, X.; Zhang, X.; Yang, B.; Hui, J.; Liu, M.; Liu, W.;Chen, Y.; Wei, Y. PEGylation and cell imaging applications of AIE based fluorescent organic nanoparticles via ring-opening reaction. Polym. Chem. 2014, 5, 689-693.
    29 Zhang, X.; Zhang, X.; Yang, B.; Liu, M.; Liu, W.; Chen, Y.;Wei, Y. Facile fabrication and cell imaging applications of aggregation induced emission dye based fluorescent organic nanoparticles. Polym. Chem. 2013, 4, 4317-4321.
    30 Zhang, X.; Zhang, X.; Yang, B.; Liu, M.; Liu, W.; Chen, Y.;Wei, Y. Polymerizable aggregation induced emission dye based fluorescent nanoparticles for cell imaging applications. Polym.Chem. 2014, 5, 356-360.
    31 Zhang,X.; Zhang, X.; Yang, B.; Liu, M.; Liu, W.; Chen,Y.;Wei, Y. Fabrication of aggregation induced emission dye-based fluorescent organic nanoparticles via emulsion polymerization and their cell imaging applications. Polym. Chem. 2014, 5,399-404.
    32 Jiang, R.; Liu, M.; Chen, T.; Huang, H.; Huang, Q.; Tian, J.;Wen, Y.; Cao, Q. Y.; Zhang, X.; Wei, Y. Facile constructionand biological imaging of cross-linked fluorescent organic nanoparticles with aggregation-induced emission feature through a catalyst-free azide-alkyne click reaction. Dyes Pigments 2018,148, 52-60.
    33 Xu,D.; Liu, M.; Zou,H.; Huang,Q.; Huang,H.; Tian, J.; Jiang,R.; Wen, Y.; Zhang, X.; Wei, Y. Fabrication of AIE-active fluorescent organic nanoparticles through one-pot supramolecular polymerization and their biological imaging. J. Taiwan Inst.Chem.E 2017, 78, 455-461.
    34 Xu,D.; Zeng,S.; Liu,M.; Chen,J.; Huang,H.; Deng,F.; Tian,J.; Wen,Y.; Zhang,X.; Wei,Y. Preparation of PEGylated and biodegradable fluorescent organic nanoparticles with aggregation-induced emission characteristics through direct ring-opening polymerization. J. Taiwan Inst. Chem. E 2018.
    35 Cui, Y.; Song, T.; Yu, J.; Yang, Y.; Wang, Z.; Qian, G. Dye encapsulated metal-organic framework for warm-white LED with high color-rendering index. Adv. Funct. Mater. 2015, 25,4796-4802.
    36 Wang, H.; Zhao, E.; Lam, J. W.; Tang, B. Z. AIE luminogens:Emission brightened by aggregation. Mater. Today 2015, 18,365-377.
    37 Luo, J.; Xie, Z.; Lam, J. W.; Cheng, L.; Chen, H.; Qiu, C.;Kwok, H. S.; Zhan, X.; Liu, Y.; Zhu, D. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem. Commun. 2001, 1740-1741.
    38 Hong, Y.; Lam, J. W.; Tang, B. Z. Aggregation-induced emission. Chem. Soc. Rev. 2011, 40, 5361-5388.
    39 Hong, Y.; Lam, J. W.; Tang, B. Z. Aggregation-induced emission:Phenomenon, mechanism and applications. Chem. Commun. 2009, 4332-4353.
    40 Mei,J.; Hong, Y.; Lam,J. W.; Qin,A.; Tang, Y.; Tang, B. Z.Aggregation-induced emission:The whole is more brilliant than the parts. Adv. Mater. 2014, 26, 5429-5479.
    41 Mei,J.; Leung,N. L.; Kwok,R. T.; Lam,J. W.; Tang,B. Z.Aggregation-induced emission:Together we shine, united we soar! Chem. Rev. 2015, 115, 11718-11940.
    42 Yuan, W. Z.; Lu, P.; Chen, S.; Lam, J. W.; Wang, Z.; Liu, Y.;Kwok, H. S.; Ma, Y.; Tang, B. Z. Changing the behavior of chromophores from aggregation-caused quenching to aggregation-induced emission:Development of highly efficient light emitters in the solid state. Adv. Mater. 2010, 22, 2159-2163.
    43 Wang, M.; Zhang, G.; Zhang, D.; Zhu, D.; Tang, B. Z. Fluorescent bio/chemosensors based on silole and tetraphenylethene luminogens with aggregation-induced emission feature. J. Ma ter. Chem. 2010, 20, 1858-1867.
    44 Zhan, C.; You, X.; Zhang, G.; Zhang, D. Bio-/chemosensors and imaging with aggregation-induced emission luminogens.Chem. Rec. 2016,16, 2142-2160.
    45 Kwok, R. T.; Leung, C. W.; Lam, J. W.; Tang, B. Z. Biosensing by luminogens with aggregation-induced emission characteristics. Chem. Soc. Rev. 2015, 44, 4228-4238.
    46 Zhang, X.; Zhang, X.; Tao, L.; Chi, Z.; Xu, J.; Wei, Y. Aggregation induced emission-based fluorescent nanoparticles:Fabrication methodologies and biomedical applications. J. Mater.Chem. B 2014, 2, 4398-4414.
    47 Zhang, X.; Wang, K.; Liu, M.; Zhang, X.; Tao, L.; Chen, Y.;Wei, Y. Polymeric AIE-based nanoprobes for biomedical applications:Recent advances and perspectives. Nanoscale 2015,7, 11486-11508.
    48 Yi, X.; Li, J.; Zhu, Z.; Liu, Q.; Xue, Q.; Ding, D. In vivo cancer research using aggregation-induced emission organic nanoparticles. Drug Discov. Today 2017, 22, 1412-1420.
    49 Wan, Q.; Huang, Q.; Liu, M.; Xu,D.; Huang, H.; Zhang, X.;Wei, Y. Aggregation-induced emission active luminescent polymeric nanoparticles:Non-covalent fabrication methodologies and biomedical applications. Appl. Mater. Today 2017, 9,145-160.
    50 Ding, D.; Li, K.; Liu, B.; Tang, B. Z. Bioprobes based on AIEfluorogens. Acc. Chem. Res. 2013, 46, 2441-2453.
    51 Sun,X.; Zebibula, A.; Dong, X.; Zhang,G.; Zhang,D.; Qian,J.; He, S. Aggregation-induced emission nanoparticles encapsulated with PEGylated nano graphene oxide and their applications in two-photon fluorescence bioimaging and photodynamic therapy in vitro and in vivo. ACS Appl. Mater. Interfaces2018, 10, 25037-25046.
    52 Li, D.; Yu, J. AIEgens-functionalized inorganic-organic hybrid materials:Fabrications and applications. Small 2016, 12,6478-6494.
    53 Zhang, M.; Feng, G.; Song, Z.; Zhou, Y. P.; Chao, H. Y.; Yuan,D.; Tan, T. T. Y.; Guo, Z.; Hu, Z.; Tang, B. Z.; Liu, B.; Zhao,D. Two-dimensional metal-organic framework with wide channels and responsive turn-on fluorescence for the chemical sensing of volatile organic compounds. J. Am. Chem. Soc. 2014,136, 7241-7244.
    54 Li, D.; Yu, J.; Xu, R. Mesoporous silica functionalized with an AIE luminogen for drug delivery. Chem. Commun. 2011, 47,11077-11079.
    55 Montalti, M.; Prodi, L.; Rampazzo, E.; Zaccheroni, N. Dyedoped silica nanoparticles as luminescent organized systems for nanomedicine. Chem. Soc. Rev. 2014, 43, 4243-4268.
    56 Hao, X.; Zhou, M.; Zhang, X.; Yu, J.; Jie, J.; Yu, C.; Zhang, X.Highly luminescent and photostable core-shell dye nanoparticles for high efficiency bioimaging. Chem. Commun. 2014,50, 737-739.
    57 Wang, Y. F.; Che,J.; Zheng, Y. C.; Zhao, Y. Y.; Chen, F.; Jin,S. B.; Gong, N. Q.; Xu, J.; Hu, Z. B.; Liang, X. J. Multi-stable fluorescent silica nanoparticles obtained from in situ doping with aggregation-induced emission molecules. J. Mater. Chem.B 2015, 3, 8775-8781.
    58 Zhang, X.; Zhang, X.; Yang, B.; Liu,L.; Hui, J.; Liu, M.; Chen,Y.; Wei, Y. Aggregation-induced emission dye based luminescent silica nanoparticles:Facile preparation, biocompatibility evaluation and cell imaging applications. RSC Adv. 2014, 4,10060-10066.
    59 Kim, S.; Pudavar, H. E.; Bonoiu, A.; Prasad, P. N. Aggregation-enhanced fluorescence in organically modified silica nanoparticles:A novel approach toward high-signal-output nanoprobes for two-photon fluorescence bioimaging. Adv. Mater.2007, 19, 3791-3795.
    60 Kim, S.; Ohulchanskyy, T. Y.; Pudavar, H. E.; Pandey, R. K.;Prasad, P. N. Organically modified silica nanoparticles co-encapsulating photosensitizing drug and aggregation-enhanced two-photon absorbing fluorescent dye aggregates for twophoton photodynamic therapy. J. Am. Chem. Soc. 2007, 129,2669-2675.
    61 Faisal, M.; Hong,Y.; Liu,J.; Yu,Y.; Lam,J. W.; Qin,A.; Lu,P.; Tang, B. Z. Fabrication of fluorescent silica nanoparticles hybridized with AIE luminogens and exploration of their applications as nanobiosensors in intracellular imaging. Chem.Eur. J. 2010, 16, 4266-4272.
    62 Wang, Y.; Zhao, Q.; Han, N.; Bai, L.; Li, J.; Liu, J.; Che, E.;Hu, L.; Zhang, Q.; Jiang, T. Mesoporous silica nanoparticles in drug delivery and biomedical applications. Nanomed. Nanotechnol. Biol. Med. 2015, 11, 313-327.
    63 Zhang, X.; Zhang, X.; Wang, S.; Liu, M.; Zhang, Y.; Tao, L.;Wei, Y. Facile incorporation of aggregation-induced emission materials into mesoporous silica nanoparticles for intracellular imaging and cancer therapy. ACS Appl. Mater. Interfaces 2013,5, 1943-1947.
    64 Yan, D.; Lu, J.; Ma, J.; Wei, M.; Li, S.; Evans, D. G.; Duan, X.Near-infrared absorption and polarized luminescent ultrathin films based on sulfonated cyanines and layered double hydroxide. J. Phys. Chem. C2011,115, 7939-7946.
    65 Li, D.; Miao, C.; Wang, X.; Yu, X.; Yu, J.; Xu, R. AIE cation functionalized layered zirconium phosphate nanoplatelets:Ionexchange intercalation and cell imaging. Chem. Commun. 2013,49, 9549-9551.
    66 Li, Z.; Lu, J.; Qin, Y.; Li, S.; Qin, S. Two dimensional restriction-induced luminescence of tetraphenyl ethylene within the layered double hydroxide ultrathin films and its fluorescence resonance energy transfer. J. Mater. Chem. C 2013, 1,5944-5952.
    67 Guan, W.; Lu, J.; Zhou, W.; Lu, C. Aggregation-induced emission molecules in layered matrices for two-color luminescence films. Chem. Commun, 2014, 50, 11895-11898.
    68 Guan, W.; Wang, S.; Lu, C.; Tang, B. Z. Fluorescence microscopy as an alternative to electron microscopy for microscale dispersion evaluation of organic-inorganic composites. Nat.Commun. 2016, 7, 11811.
    69 Zhong, J.; Li, Z.; Guan, W.; Lu, C. Cation-πinteraction triggered-fluorescence of clay fillers in polymer composites for quantification of three-dimensional macrodispersion. Anal.Chem. 2017, 89, 12472-12479.
    70 Tian, R.; Zhong, J.; Lu, C.; Duan, X. Hydroxyl-triggered fluorescence for location of inorganic materials in polymer-matrix composites. Chem. Sci. 2018, 9, 218-222.
    71 Ferraz, M.; Monteiro, F.; Manuel, C. Hydroxyapatite nanoparticles:A review of preparation methodologies. J. Appl. Biomater. Biom. 2004, 2, 74-80.
    72 Prakasam, M.; Locs, J.; Salma-Ancane,K.; Loca, D.; Largeteau, A.; Berzina-Cimdina, L. Fabrication, properties and applications of dense hydroxyapatite:A review. J. Func. Biomater. 2015, 6, 1099-1140.
    73 Haider, A.; Haider, S.; Han, S. S.; Kang, I. K. Recent advances in the synthesis, functionalization and biomedical applications of hydroxyapatite:A review. RSC Adv. 2017, 7, 7442-7458.
    74 Liu, M.; Liu, H.; Sun, S.; Li, X.; Zhou, Y.; Hou, Z.; Lin, J.Multifunctional hydroxyapatite/Na(Y/Gd)F4:Yb3+, Er3+composite fibers for drug delivery and dual modal imaging. Lang muir 2014, 30, 1176-1182.
    75 Wang, D.; Li, D. AIEgens-functionalised hydroxyapatite rods for explosive detection in water and pH-triggered drug delivery.Inorg. Chem. Commun. 2018, 91, 105-107.
    76 Li, D.; Liang, Z.; Chen, J.; Yu, J.; Xu, R. AIE luminogen bridged hollow hydroxyapatite nanocapsules for drug delivery.Dalton Trans. 2013, 42, 9877-9883.
    77 Jiang,R.; Liu,M.; Huang, H.; Huang,L.; Huang,Q.; Wen, Y.;Cao, Q. Y.; Tian, J.; Zhang, X.; Wei, Y. A novel self-catalyzed photoATRP strategy for preparation of fluorescent hydroxyapatite nanoparticles and their biological imaging. Appl.Surf. Sci. 2018,434, 1129-1136.
    78 Kitagawa, S. Metal-organic frameworks(MOFs). Chem. Soc.Rev. 2014, 43, 5415-5418.
    79 Cui, Y.; Yue, Y.; Qian, G.; Chen, B. Luminescent functional metal-organic frameworks. Chem. Rev. 2011, 112, 1126-1162.
    80 Hu, Z.; Deibert, B. J.; Li, J. Luminescent metal-organic frameworks for chemical sensing and explosive detection. Chem.Soc. Rev. 2014, 43, 5815-5840.
    81 Li, Q.; Wu, X.; Huang, X.; Deng, Y.; Chen, N.; Jiang, D.;Zhao, L.; Lin, Z.; Zhao, Y. Tailoring the fluorescence of AIEactive metal-organic frameworks for aqueous sensing of metal ions. ACS Appl. Mater. Interfaces 2018, 10, 3801-3809.
    82 Wu, X. X.; Fu, H. R.; Han, M. L.; Zhou, Z.; Ma, L. F. Tetraphenylethylene immobilized metal-organic frameworks:Highly sensitive fluorescent sensor for the detection of Cr2O72-and nitroaromatic explosives. Cryst. Growth Des. 2017, 17,6041-6048.
    83 Xie,M. H.; Cai,W.; Chen,X.; Guan,R. F.; Wang,L. M.; Hou,G. H.; Xi, X. G.; Zhang, Q. F.; Yang, X. L.; Shao, R. Novel CO2 fluorescence turn-on quantification based on a dynamic AIE-active metal-organic Framework. ACS Appl. Mater. Interfaces 2018,10, 2868-2873.
    84 Liu,X. G.; Wang,H.; Chen, B.; Zou,Y.; Gu, Z. G.; Zhao, Z.;Shen, L. A luminescent metal-organic framework constructedusing a tetraphenylethene-based ligand for sensing volatile organic compounds. Chem. Commun. 2015, 51, 1677-1680.
    85 Shustova, N. B.; Ong, T. C.; Cozzolino, A. F.; Michaelis, V.K.; Griffin, R. G.; Dinca, M. Phenyl ring dynamics in a tetraphenylethylene-bridged metal-organic framework:Implications for the mechanism of aggregation-induced emission. J.Am. Chem. Soc. 2012,134, 15061-15070.
    86 Shustova, N. B.; McCarthy, B. D.; Dinca, M. Turn-on fluorescence in tetraphenylethylene-based metal-organic frameworks:An alternative to aggregation-induced emission. J. Am. Chem.Soc. 2011,133, 20126-20129.
    87 Wei, Z.; Gu, Z. Y.; Arvapally, R. K.; Chen, Y. P.; McDougald Jr., R. N.; Ivy, J. F.; Yakovenko, A. A.; Feng, D.; Omary, M.A.; Zhou, H. C. Rigidifying fluorescent linkers by metal-organic framework formation for fluorescence blue shift and quantum yield enhancement. J. Am. Chem. Soc. 2014, 136,8269-8276.
    88 Guo, Y.; Feng, X.; Han,T.; Wang,S.; Lin, Z.; Dong,Y.; Wang,B. Tuning the luminescence of metal-organic frameworks for detection of energetic heterocyclic compounds. J. Am. Chem.Soc. 2014,136, 15485-15488.
    89 Jiang, Y.; Sun, L.; Du, J.; Liu, Y.; Shi, H.; Liang, Z.; Li, J.Multifunctional zinc metal-organic framework based on designed H4TCPP ligand with aggregation-induced emission effect:CO2 adsorption,luminescence,and sensing property.Cryst. Growth Des. 2017, 17, 2090-2096.
    90 He, C.; Liu, D.; Lin, W. Nanomedicine applications of hybrid nanomaterials built from metal-ligand coordination bonds:Nanoscale metal-organic frameworks and nanoscale coordination polymers. Chem. Rev. 2015, 115, 11079-11108.
    91 Taylor-Pashow,K. M.; Della Rocca,J.; Huxford,R. C.; Lin,W. Hybrid nanomaterials for biomedical applications. Chem.Commun. 2010, 46, 5832-5849.
    92 Biju, V. Chemical modifications and bioconjugate reactions of nanomaterials for sensing, imaging, drug delivery and therapy.Chem. Soc. Rev. 2014, 43, 744-764.
    93 Geng, J.; Goh, C. C.; Qin, W.; Liu, R.; Tomczak, N.; Ng, L. G.;Tang, B. Z.; Liu, B. Silica shelled and block copolymer encapsulated red-emissive AIE nanoparticles with 50%quantum yield for two-photon excited vascular imaging. Chem. Com mun. 2015, 51, 13416-13419.
    94 Mao, L.; Liu, M.; Xu, D.; Wan, Q.; Huang, Q.; Jiang, R.; Shi,Y.; Deng, F.; Zhang, X.; Wei, Y. Synthesis, surface modification and biological imaging of aggregation-induced emission(AIE)dye doped silica nanoparticles. Appl. Surf. Sci. 2017,403, 396-402.
    95 Chen, J.; Liu, M.; Huang, Q.; Huang, L.; Huang, H.; Deng, F.;Wen, Y.; Tian, J.; Zhang, X.; Wei, Y. Facile preparation of fluorescent nanodiamond-based polymer composites through a metal-free photo-initiated RAFT process and their cellular imaging. Chem. Eng. J. 2017, 337, 82-89.
    96 Mao, L.; Liu, X.; Liu, M.; Huang, L.; Xu, D.; Jiang, R.; Huang,Q.; Wen, Y.; Zhang, X.; Wei, Y. Surface grafting of zwitterionic polymers onto dye doped AIE-active luminescent silica nanoparticles through surface-initiated ATRP for biological imaging applications. Appl. Surf. Sci. 2017, 419, 188-196.
    97 Wang, X.; Morales, A. R.; Urakami, T.; Zhang, L.; Bondar, M.V.; Komatsu, M.; Belfield, K. D. Folate receptor-targeted aggregation-enhanced near-IR emitting silica nanoprobe for onephoton in vivo and two-photon ex vivo fluorescence bioimaging. Bioconjugate Chem. 2011, 22, 1438-1450.
    98 Li, M.; Lam, J. W.; Mahtab, F.; Chen, S.; Zhang, W.; Hong, Y.;Xiong, J.; Zheng, Q.; Tang, B. Z. Biotin-decorated fluorescent silica nanoparticles with aggregation-induced emission characteristics:Fabrication, cytotoxicity and biological applications.J. Mater. Chem. B 2013, 1, 676-684.
    99 Wang, X.; Song, P.; Peng, L.; Tong, A.; Xiang, Y. Aggregation-induced emission luminogen-embedded silica nanoparticles containing DNA aptamers for targeted cell imaging.ACS Appl. Mater. Interfaces 2015, 8, 609-616.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700