复杂边界条件多洪源防洪保护区洪水风险分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Risk analysis of flood protected zone with complex boundary conditions and multi-flood sources
  • 作者:卢程伟 ; 周建中 ; 江焱生 ; 何典灿
  • 英文作者:LU Chengwei;ZHOU Jianzhong;JIANG Yansheng;HE Diancan;School of Hydropower and Information Engineering,Huazhong University of Science and Technology;Hubei Key Laboratory of Digital Valley Science and Technology,Huazhong University of Science and Technology;Hubei Provincial Department of Water Resources;School of Aerospace Engineering,Huazhong University of Science and Technology;
  • 关键词:防洪保护区 ; 风险分析 ; 堤防溃决 ; 多洪源 ; 复杂边界
  • 英文关键词:flood protected zone;;risk analysis;;dike-break;;multi-flood sources;;complex boundaries
  • 中文刊名:SKXJ
  • 英文刊名:Advances in Water Science
  • 机构:华中科技大学水电与数字化工程学院;数字流域科学与技术湖北省重点实验室;湖北省水利厅;华中科技大学航空航天学院;
  • 出版日期:2018-07-16 14:06
  • 出版单位:水科学进展
  • 年:2018
  • 期:v.29;No.145
  • 基金:国家重点研发计划资助项目(2016YFC0402209);; 国家自然科学基金资助项目(91547208)~~
  • 语种:中文;
  • 页:SKXJ201804008
  • 页数:9
  • CN:04
  • ISSN:32-1309/P
  • 分类号:62-70
摘要
为了定量获取防洪保护区在多洪源和复杂边界条件下的溃堤洪水风险信息,以非恒定流控制方程为理论基础,建立了多洪源一维河网水动力学模型和防洪保护区二维洪水演进模型,利用溃坝模型实现河道与保护区的耦联,并采用局部网格加密和相似建筑物模拟等方法处理保护区内道路等复杂边界的导阻水作用。利用所建模型模拟了长江、汉江和东荆河3种不同洪水来源,在4种不同位置溃堤情况下汉南至白庙长江干堤防洪保护区的洪水淹没情景,采用基于淹没水深的损失率关系法对比分析了4种计算方案的淹没面积、经济损失和受灾人口。结果表明:模型构建合理、稳定性和适应性好,复杂边界对洪水演进过程影响明显,不同洪源溃堤情形的风险信息差异较大;在计算条件下,以长江发生1954年型300年一遇洪水向新溃口情形下的淹没损失最严重,其淹没面积达3 790 km~2,受灾人口为196.8万人,经济损失约802亿元。研究成果可为洪水风险管理与避洪转移决策提供有力的技术支撑。
        In order to estimate the risk of dike-break flood in the flood protected zone under multi-flood sources and complex boundary conditions,a one-dimensional multi-breach model and a two-dimensional flood routing model were established based on unsteady flow control equation. A dam-break model was used to couple rivers and flood protected zones,and local mesh refinement method and approximate structure generalization method were used to deal with water division and blocking resulting from the complex boundaries such as roads in the flood protected zones. Four flood scenarios of the flood protected zone from Hannan to Baimiao from three flood sources including the Yangtze River,Hanjiang River,and Dongjinghe River were simulated. The flooding area,economic loss and flood-affected population were compared and analyzed by the loss rate method based on inundation depths. The results showed that the model established in this study was reasonable and stable. The complex boundary had a significant impact on the flood routing,and the risk differed significantly depending on the flood sources. The worst situation was observed in a 300-year flood occurred in 1954 in the Yangtze River at the dike-break position of Xiangxin,resulting the submergence of3 790 km~2 area,a flood-affected population of 1. 968 million,and an economic loss of 80. 2 billion yuan. This study can provide strong technical supports for flood risk management and decision-making of refuge and migration.
引文
[1]夏军,石卫,张利平,等.气候变化对防洪安全影响研究面临的机遇与挑战[J].四川大学学报(工程科学版),2016,48(2):7-13.(XIA J,SHI W,ZHANG L P,et al.Opportunity and challenge of the climate change impact on flood protection[J].Journal of Sichuan University(Engineering Science Edition),2016,48(2):7-13.(in Chinese))
    [2]ZOU Q,ZHOU J Z,ZHOU C,et al.Comprehensive flood risk assessment based on set pair analysis-variable fuzzy sets model and fuzzy AHP[J].Stochastic Environmental Research and Risk Assessment,2013,27(2):525-546.
    [3]果鹏,夏军强,陈倩,等.基于力学过程的蓄滞洪区洪水风险评估模型及应用[J].水科学进展,2017,28(6):858-867.(GUO P,XIA J Q,CHEN Q,et al.A mechanics-based model of flood risk assessment and its application in a flood diversion zone[J].Advances in Water Science,2017,28(6):858-867.(in Chinese))
    [4]姜晓明,李丹勋,王兴奎.基于黎曼近似解的溃堤洪水一维-二维耦合数学模型[J].水科学进展,2012,23(2):214-221.(JIANG X M,LI D X,WANG X K.Coupled one-and two-dimensional numerical modeling of levee-breach flows using the Godunov method[J].Advances in Water Science,2012,23(2):214-221.(in Chinese))
    [5]宋利祥,周建中,郭俊,等.复杂地形上坝堤溃决洪水演进的非结构有限体积模型[J].应用基础与工程科学学报,2012,20(1):149-158.(SONG L X,ZHOU J Z,GUO J,et al.An unstructured finite-volume model for dam/dyke break floods with complex topography[J].Journal of Basic Science and Engineering,2012,20(1):149-158.(in Chinese))
    [6]LAI X J,JIANG J H,LIANG Q H,et al.Large-scale hydrodynamic modeling of the middle Yangtze River basin with complex riverlake interactions[J].Journal of Hydrology,2013,492:228-243.
    [7]陈文龙,宋利祥,邢领航,等.一维-二维耦合的防洪保护区洪水演进数学模型[J].水科学进展,2014,25(6):848-855.(CHEN W L,SONG L X,XING L H,et al.A 1D-2D coupled mathematical model for numerical simulating of flood routine in flood protected zone[J].Advances in Water Science,2014,25(6):848-855.(in Chinese))
    [8]苑希民,田福昌,王丽娜.漫溃堤洪水联算全二维水动力模型及应用[J].水科学进展,2015,26(1):83-90.(YUAN X M,TIAN F C,WANG L N.Comprehensive two-dimensional associate hydrodynamic models for overflow and levee-breach flood and its application[J].Advances in Water Science,2015,26(1):83-90.(in Chinese))
    [9]苑希民,庞金龙,田福昌,等.多溃口河网耦合模型在防洪保护区洪水分析中的应用[J].水资源与水工程学报,2016,27(1):128-135.(YUAN X M,PANG J L,TIAN F C,et al.Application of multi-breach river network coupling model in flood analysis of flood control protection zone[J].Journal of Water Resources and Water Engineering,2016,27(1):128-135.(in Chinese))
    [10]贺新娟,徐国宾,苑希民.溃口宽度和倒灌、退水对防洪保护区洪水演进的影响[J].水资源与水工程学报,2016,27(2):141-147.(HE X J,XU G B,YUAN X M.Effect of levee-breach width and water intrusion and recession on flood routine in flood protected zone[J].Journal of Water Resources and Water Engineering,2016,27(2):141-147.(in Chinese))
    [11]李春辉,徐国宾,苑希民,等.河道与蓄滞洪区联合防洪数值模拟研究进展[J].水资源与水工程学报,2017,28(6):139-144.(LI C H,XU G B,YUAN X M,et al.Research progress on numerical simulation of joint flood control in river and flood detention area[J].Journal of Water Resources and Water Engineering,2017,28(6):139-144.(in Chinese))
    [12]王智勇,陈永,朱德军,等.一维-二维耦合的河湖系统整体水动力模型[J].水科学进展,2011,22(4):516-522.(WANG Z Y,CHEN Y C,ZHU D J,et al.1D-2D coupled hydrodynamic simulation model of river-lake system[J].Advances in Water Science,2011,22(4):516-522.(in Chinese))
    [13]LIANG Z M,HUANG H P,CHENG L,et al.Safety assessment for dams of the cascade reservoirs system of Lancang River in extreme situations[J].Stochastic Environmental Research and Risk Assessment,2017,31(9):2459-2469.
    [14]PAPAIOANNOU G,LOUKAS A,VASILIADES L,et al.Flood inundation mapping sensitivity to riverine spatial resolution and modelling approach[J].Natural Hazards,2016,83(1):S117-S132.
    [15]张晓雷,夏军强,李娜.网格尺度及村庄糙率对滩区洪水演进模拟结果的影响[J].水力发电学报,2016,35(10):48-57.(ZHANG X L,XIA J Q,LI N.Impacts of mesh scale and village region roughness on predictions of flood inundation over complex floodplains[J].Journal of Hydroelectric Engineering,2016,35(10):48-57.(in Chinese))
    [16]卢程伟,周建中,江焱生,等.基于MIKE FLOOD的荆江分洪区洪水演进数值模拟[J].应用基础与工程科学学报,2017,25(5):905-916.(LU C W,ZHOU J Z,JIANG Y S,et al.Flood routing numerical simulation in Jingjiang diversion area based on MIKE FLOOD model[J].Journal of Basic Science and Engineering,2017,25(5):905-916.(in Chinese))
    [17]衣秀勇,关春曼,果有娜,等.DHI MIKE FLOOD洪水模拟技术应用与研究[M].北京:中国水利水电出版社,2014:269-272.(YI X Y,GUAN C M,GUO Y N,et al.DHI MIKE FLOOD flood simulation technology application and research[M].Beijing:China Water&Power Press,2014:269-272.(in Chinese))
    [18]王艳艳,刘树坤.洪水管理经济评价研究进展[J].水科学进展,2013,24(4):598-606.(WANG Y Y,LIU S K.Advances in flood-management economic evaluation[J].Advances in Water Science,2013,24(4):598-606.(in Chinese))

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700