激光增材制造残余应力研究现状
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research Progress on Residual Stress in Laser Additive Manufacturing
  • 作者:杜畅 ; 张津 ; 连勇 ; 袁孝民 ; Michael ; Y.Huo
  • 英文作者:DU Chang;ZHANG Jin;LIAN Yong;YUAN Xiao-min;Michael Y.Huo;Institute for Advanced Materials and Technology, University of Science and Technology Beijing;North China Institute of Science and Technology;Beijing Key Lab for Corrosion,Erosion and Surface Technology;School of Mechanical, Industrial & Manufacturing Engineering, Oregon State University;
  • 关键词:激光增材制造 ; 残余应力 ; 残余应力测试 ; 数值模拟 ; 控制
  • 英文关键词:laser additive manufacturing;;residual stress;;determination;;numerical simulation;;control
  • 中文刊名:BMJS
  • 英文刊名:Surface Technology
  • 机构:北京科技大学新材料技术研究院;华北科技学院;北京市腐蚀磨蚀与表面技术重点实验室;School of Mechanical, Industrial & Manufacturing Engineering, Oregon State University;
  • 出版日期:2019-01-20
  • 出版单位:表面技术
  • 年:2019
  • 期:v.48
  • 基金:国家重点研发计划(2016YFB0301105)~~
  • 语种:中文;
  • 页:BMJS201901027
  • 页数:8
  • CN:01
  • ISSN:50-1083/TG
  • 分类号:213-220
摘要
首先介绍了激光增材制造中残余应力的产生和危害,指出高的温度梯度和不均匀相变是高残余应力的原因,列举了残余应力造成的热裂纹、翘曲和疲劳失效等危害。然后,从残余应力的试验测定、数值模拟以及调控消减三个方面总结了相关研究现状。残余应力试验测定部分包括表面和内部残余应力的测试,方法有X射线衍射法、中子衍射法和压痕法等。数值模拟部分主要评述了工艺参数和扫描策略对应力场的影响。残余应力调控指的是在成形过程中,通过工艺控制减少应力的产生,主要介绍了采用热处理、超声冲击降低已成形构件残余应力的相关研究。最后提出应开展微观残余应力到大型构件宏观残余应力的多尺度表征,表面残余应力和内部残余应力相结合的多手段定量测定等专题研究,为开展残余应力与工件失效的关联性研究打下基础。
        This paper firstly introduces the generation and harm of residual stress in additive manufacturing, identifies that high temperature gradients and heterogeneous phase changes are the primary causes of high residual stress and lists hazards caused by residual stress such as thermal crack, warping, and fatigue failure. Then, the research progress is summarized from the results of the residual stress tests, numerical simulation, and regulation reduction. Experimental measurement includes surface and internal residual stress and adopted methods consist of X-ray diffraction, neutron diffraction and indentation methods. The numerical simulation mainly focuses on the influence of technological parameters and scanning strategy on stress field. Regulation refers to the reduction of stress by controlling parameters during the forming process. Correlational research on decreasing residualstress of formed components by heat treatment and ultrasonic shock are introduced. Finally, it is pointed out that the following monographic studies should be promoted: multi-scale characterization of residual stress from microcosmic to macrocosmic and quantitative measurement of surface and interior residual stress via multiple ways, to lay a foundation for the research on the correlation between residual stress and invalidation.
引文
[1]SIMONELLI M,TSE Y Y,TUCK C.Effect of the build orientation on the mechanical properties and fracture modes of SLM Ti-6Al-4V[J].Materials science and engineering:A,2014,616:1-11.
    [2]田杰,黄正华,戚文军,等.金属选区激光熔化的研究现状[J].材料导报,2017,31(1):90-94.TIAN Jie,HUANG Zheng-hua,QI Wen-jun,et al.Research progress on selective laser melting of metal[J].Materials review,2017,31(1):90-94.
    [3]CASATI R,LEMKE J,VEDANI M.Microstructure and fracture behavior of 316L austenitic stainless steel produced by selective laser melting[J].Journal of materials science&technology,2016,32(8):738-744.
    [4]ZHANG Yi,WU Lin-min,GUO Xing-ye,et al.Additive manufacturing of metallic materials:A review[J].Journal of materials engineering&performance,2018,27(1):1-13.
    [5]杨永强,王迪,吴伟辉.金属零件选区激光熔化直接成型技术研究进展[J].中国激光,2011,38(6):54-64.YANG Yong-qiang,WANG Di,WU Wei-hui.Research progress of direct manufacturing of metal parts by selective laser melting[J].Chinese journal of lasers,2011,38(6):54-64.
    [6]ZHANG Sheng,WEI Qing-song,CHENG Ling-yu,et al.Effects of scan line spacing on pore characteristics and mechanical properties of porous Ti6Al4V implants fabricated by selective laser melting[J].Materials&design,2014,63(21):185-193.
    [7]QI H B,TAN Y N,LIN F,et al.Direct metal part forming of 316 L stainless steel powder by electron beam selective melting[J].Proceeding of the institution of mechanical engineers,part B:Journal of engineering,2006,220(11):1845-1853.
    [8]GEBHARDT Andreas,SCHMIDT Frank-Michael,HOTTERJan-Steffen,et al.Additive manufacturing by selective laser melting:the realize desktop machine and application for dental industry[J].Physics procedia,2010,5(2):543-549.
    [9]WEI Qing-song,LI Shuai,HAN Chang-jun,et al.Selective laser melting of stainless-steel/nano-hydroxyapatite composites for medical applications:microstructure,element distribution,crack and mechanical properties[J].Journal of materials processing technology,2015,222:444-453.
    [10]MA M,WANG Z,ZENG X.A comparison on metallurgical behaviors of 316L stainless steel by selective laser melting and laser cladding deposition[J].Materials science and engineering:A,2017,685:265-273.
    [11]王梦瑶,朱海红,祁婷,等.选区激光熔化成形Al-Si合金及其裂纹形成机制研究[J].激光技术,2016,40(2):219-222.WANG Meng-yao,ZHU Hai-hong,QI Ting,et al.Selective laser melting Al-Si aluminum alloy and the crack formation mechanism[J].Laser technology,2016,40(2):219-222.
    [12]张洁,李帅,魏青松.等.激光选区熔化Inconel 625合金开裂行为及抑制研究[J].稀有金属,2015,39(11):961-966.ZHANG Jie,LI Shuai,WEI Qing-song,et al.Cracking behavior and inhibiting process of inconel625 alloy formed by selective laser melting[J].Chinese journal of rare metals,2015,39(11):961-966.
    [13]周旭,周燕,魏青松,等.激光选区熔化近α钛合金开裂机理及抑制研究[J].中国机械工程,2015,26(20):2816-2820.ZHOU Xu,ZHOU Yan,WEI Qing-song,et al.Study on cracking mechanism and inhibiting process of nearαtitanium alloy formed by SLM[J].China mechanical engineering,2015,26(20):2816-2820.
    [14]张凯,刘婷婷,张长东,等.基于熔池数据分析的激光选区熔化成形件翘曲变形行为研究[J].中国激光,2015,42(9):135-141.ZHANG Kai,LIU Ting-ting,ZHANG Chang-dong,et al.Study on deformation behavior in selective laser melting based on the analysis of the melt pool data[J].Chinese journal of lasers,2015,42(9):135-141.
    [15]LI C,LIU J F,GUO Y B.Prediction of residual stress and part distortion in selective laser melting[J].Procedia cirp,2016,45:171-174.
    [16]BARTLETT J L,CROOM B P,BURDICK J,et al.Revealing mechanisms of residual stress development in additive manufacturing via digital image correlation[J].Additive manufacturing,2018,22(8):1-12.
    [17]RANS C,MICHIELSSEN J,WALKER M,et al.Beyond the orthogonal:on the influence of build orientation on fatigue crack growth in SLM Ti-6Al-4V[J].International journal of fatigue,2018,116(11):344-354.
    [18]严铿,芦春琪,黎志云.焊接残余应力对灰铸铁焊接冷裂纹的影响[J].江苏科技大学学报(自然科学版),2008,22(3):23-26.YAN Keng,LU Chun-qi,LI Zhi-yun.Influence of welding residual stress on welding cold cracking of gray cast iron[J].Journal of Jiangsu University of Science and Technology:Natural science edition,2008,22(3):23-26.
    [19]ETO S,MIURA Y,TANI J,et al.Effect of residual stress induced by pulsed-laser irradiation on initiation of chloride stress corrosion cracking in stainless steel[J].Materials science&engineering A,2014,590(1):433-439.
    [20]万志鹏,王宠,蒋文涛,等.孔洞缺陷对3D打印Ti-6Al-4V合金疲劳试样应力分布的影响[J].实验力学,2017,32(1):1-8.WAN Zhi-peng,WANG Chong,JIANG Wen-tao,et al.On the effect of void defects on stress distribution of Ti-6Al-4V alloy fatigue specimen in 3D printing[J].Journal of experimental mechanics,2017,32(1):1-8.
    [21]LEUDERS S,THONE M,RIEMER A,et al.On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting:fatigue resistance and crack growth performance[J].International journal of fatigue,2013,48(3):300-307.
    [22]黄小波,柳鸿飞,高玉魁,等.喷丸处理的锆合金残余应力场分布规律[J].表面技术,2018,47(1):16-20.HUANG Xiao-bo,LIU Hong-fei,GAO Yu-kui,et al.Distribution rule of residual stress field of zirconium alloy induced by shot peening[J].Surface technology,2018,47(1):16-20.
    [23]郑林,窦世涛,张津,等.短波长X射线衍射技术及在环境工程中的应用展望[J].装备环境工程,2017,14(6):43-48.ZHENG Lin,DOU Shi-tao,ZHANG Jin,et al.Shortwavelength X-ray diffraction and outlook for applications in environmental engineering[J].Equipment environmental engineering,2017,14(6):43-48.
    [24]PROTASOV C E,SAFRONOV V A,KOTOBAN D V,et al.Experimental study of residual stresses in metal parts obtained by selective laser melting[J].Physics procedia,2016,83:825-832.
    [25]周佳平.激光沉积制造应力演化及其控制[D].沈阳:沈阳航空航天大学,2016.ZHOU Jia-ping.Research on stress evolution mechanism and control of laser deposition manufacturing[D].Shenyang:Shenyang Aerospace University,2016.
    [26]何贝贝.选区激光熔化TiNi形状记忆合金热-力耦合数值模拟及实验研究[D].南京:南京航空航天大学,2016.HE Bei-bei.Numerical simulation and experimental investigation on thermal-mechanical behavior during selective laser melting of TiNi shape memory alloy[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2016.
    [27]梁晓康,陈济轮,严振宇,等.激光选区熔化成形TC4钛合金表面粘粉及残余应力研究[J].电加工与模具,2016(5):52-55.LIANG Xiao-kang,CHEN Ji-lun,YAN Zhen-yu,et al.Study on surface adhesion and residual stress of TC4 titanium alloy by selective laser melting[J].Electromachining&mould,2016(5):52-55.
    [28]郑东来.H13钢的选择性激光熔化制备及残余应力分析[D].哈尔滨:哈尔滨工业大学,2016.ZHENG Dong-lai.Fabrication of H13 steel by selective laser melting and residual stress analysis[D].Harbin:Harbin Institute of Technology,2016.
    [29]何卫锋,张金杨,卓君,等.激光冲击强化钛合金熔覆修复试件疲劳性能研究[J].中国激光,2015,42(11):101-107.HE Wei-feng,ZHANG Jin-yang,ZHUO Jun,et al.Fatigue properties research of titanium alloy repaired by laser cladding and laser shock processing[J].Chinese journal of lasers,2015,42(11):101-107.
    [30]苗国民.30Cr Ni Mo8钢表面激光熔覆层的组织性能和残余应力分布[J].金属热处理,2017,42(8):58-61.MIAO Guo-min.Microstructure,properties and residual stress distribution of laser clad coating on 30CrNiMo8steel[J].Heat treatment of metals,2017,42(8):58-61.
    [31]任维彬,董世运,徐滨士,等.Fe314合金激光熔覆层的应力分布规律[J].中国表面工程,2013,26(3):58-63.REN Wei-bin,DONG Shi-yun,XU Bin-shi,et al.The law of stress distribution of the laser cladding layer of Fe314Alloy[J].China surface engineering,2013,26(3):58-63.
    [32]SALMI A,ATZENI E,IULIANO L,et al.Experimental analysis of residual stresses on AlSi10Mg parts produced by means of selective laser melting(SLM)[J].Procedia cirp,2017,62:458-463.
    [33]WITHERS P J,PREUSS M,WWBSTER P J,et al.Residual strain measurement by synchrotron diffraction[J].Materials science forum,2002,404-407:1-12.
    [34]RANGASWAMY P,HOLDEN T M,ROGGE R B,et al.Residual stresses in components formed by the laser-engineered net shaping(LENS?)process[J].The journal of strain analysis for engineering design,2003,38(6):519-527.
    [35]RANGASWAMY P,GRIFFITH M L,PRIME M B,et al.Residual stresses in LENS?components using neutron diffraction and contour method[J].Materials science and engineering:A,2005,399(1-2):72-83.
    [36]MOAT R J,PINKERTON A J,LI L,et al.Residual stresses in laser direct metal deposited waspaloy[J].Materials science and engineering:A,2011,528(6):2288-2298.
    [37]WANG L,FELICELLI S D,PRATT P.Residual stresses in LENS-deposited AISI 410 stainless steel plates[J].Materials science and engineering:A,2008,496(1-2):234-241.
    [38]LI Y,ZHOU K,TAN P,et al.Modeling temperature and residual stress fields in selective laser melting[J].International journal of mechanical sciences,2018,136(3):24-35.
    [39]WU Jiao-jiao,WANG Lin-zhi,AN Xu-guang.Numerical analysis of residual stress evolution of AlSi10Mg manufactured by selective laser melting[J].Optik-international journal for light and electron optics,2017,137:65-78.
    [40]李雅莉.选区激光熔化Al Si10Mg温度场及应力场数值模拟研究[D].南京:南京航空航天大学,2015.LI Ya-li.Numerical investigation on temperature field and stress field during selective laser melting of Al Si10Mg[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2015.
    [41]PARRY L,ASHCROFT I A,WILDMAN R D.Understanding the effect of laser scan strategy on residual stress in selective laser melting through thermo-mechanical simulation[J].Additive manufacturing,2016,12:1-15.
    [42]CHENG B,SHRESTHA S,CHOU K.Stress and deformation evaluations of scanning strategy effect in selective laser melting[J].Additive manufacturing,2016,12:240-251.
    [43]THIJS Lore,VERHAEGHE Frederik,CRAEGHS Tom,et al.A study of the microstructural evolution during selective laser melting of Ti-6Al-4V[J].Acta materialia,2010,58(9):3303-3312.
    [44]SALLICA-LEVA E,JARDINI A L,FOGAGNOLO J B.Microstructure and mechanical behavior of porous Ti-6Al-4V parts obtained by selective laser melting[J].Journal of the mechanical behavior of biomedical materials,2013,26(30):98-108.
    [45]张凤英,陈静,谭华,等.钛合金激光快速成形过程中缺陷形成机理研究[J].稀有金属材料与工程,2007,36(2):211-215.ZHANG Feng-ying,CHEN Jing,TAN Hua,et al.Research on forming mechanism of defects in laser rapid formed titanium Alloy[J].Rare metal materials and engineering,2007,36(2):211-215.
    [46]LOBER Lukas,SCHIMANSKY Frank Peter,KUHN Uta,et al.Selective laser melting of a beta-solidifying TNM-B1 titanium aluminide alloy[J].Journal of materials processing technology,2014,214(9):1852-1860.
    [47]KRAHMALEV P,YADROITSEV I.Microstructure and properties of intermetallic composite coatings fabricated by selective laser melting of Ti-SiC powder mixtures[J].Intermetallics,2014,46(3):147-155.
    [48]LI Ya-li,GU Dong-dong.Thermal behavior during selective laser melting of commercially pure titanium powder:Numerical simulation and experimental study[J].Additive manufacturing,2014,s1-4:99-109.
    [49]钦兰云,王维,杨光.超声辅助钛合金激光沉积成形试验研究[J].中国激光,2013,40(1):82-87.QIN Lan-yun,WANG Wei,YANG Guang.Experimental study on ultrasonic-assisted laser metal deposition of titanium alloy[J].Chinese journal of lasers,2013,40(1):82-87.
    [50]WANG W.High-quality high-material-usage multiplelayer laser deposition of nickel alloys using sonic or ultrasonic vibration power feeding[J].Proceedings of the institution of mechanical engineers part B:Journal of engineering manufacture,2011,225(1):130-139.
    [51]NAZIK K,CHANG H S,HASSAN F,et al.Optimizing the efficiency in direct laser deposition process using vibrations of nozzle to control the flow of power[C]//ASME 2014 international mechanical engineering congress and exposition.Montreal:[s.n.],2014:1-11.
    [52]张霜银,林鑫,陈静,等.热处理对激光立体成形TC4残余应力的影响[J].稀有金属材料与工程,2009,38(5):774-778.ZHANG Shuang-yin,LIN Xin,CHEN Jing,et al.Influence of heat treatment on residual:stress of Ti-6Al-4Valloy by laser solid forming[J].Rare metal materials and engineering,2009,38(5):774-778.
    [53]戚永爱.基于超声冲击的激光快速成形镍基高温合金强化技术研究[D].南京:南京航空航天大学,2014.QI Yong-ai.Research on enhancing technology of laser rapid forming nickel-based superalloy by ultrasonic impact treatment[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2014.
    [54]ZHANG H,CHIANG R,QIN H,et al.The effects of ultrasonic nanocrystal surface modification on the fatigue performance of 3D-printed Ti64[J].International journal of fatigue,2017,103(10):136-146.
    [55]QIU C,ADKINS N J E,ATTALLAH M M.Microstructure and tensile properties of selectively laser-melted and of HIPed laser-melted Ti-6Al-4V[J].Materials science and engineering:A,2013,578:230-239.
    [56]张志超,王玉敏,李玉芳,等.SiC纤维增强钛基复合材料残余应力的数值模拟[J].材料研究学报,2016,30(5):355-364.ZHANG Zhi-chao,WANG Yu-min,LI Yu-fang,et al.Numerical simulation on residual stress of SiC fiber reinforced titanium matrix composite[J].Chinese journal of materials science,2016,30(5):355-364.
    [57]MISTRY A N,SASMAL C S,SAM Shiju,et al.Status of india-specific reduced activation ferritic-martensitic steel and fabrication technologies development for LLCB TBM[J].Fusion engineering&design,2017,125:263-268.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700