浅海负跃层条件下的双基地有源探测实验及定位声速修正
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Experimental verification of bistatic active detection and propagation speed correction in shallow water with negative thermocline
  • 作者:顾怡鸣 ; 李整林 ; 宫在晓 ; 余炎欣 ; 张仁和 ; 李风华
  • 英文作者:GU Yiming;LI Zhenglin;GONG Zaixiao;YU Yanxin;ZHANG Renhe;LI Fenghua;State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences;University of Chinese Academy of Sciences;
  • 中文刊名:XIBA
  • 英文刊名:Acta Acustica
  • 机构:中国科学院声学研究所声场声信息国家重点实验室;中国科学院大学;
  • 出版日期:2019-07-15
  • 出版单位:声学学报
  • 年:2019
  • 期:v.44
  • 基金:国家自然科学基金项目(11434012,11874061)资助
  • 语种:中文;
  • 页:XIBA201904006
  • 页数:13
  • CN:04
  • ISSN:11-2065/O4
  • 分类号:35-47
摘要
为了研究浅海条件下海底固定水平阵和机动声源的双基地有源探测性能,建立了浅海双基地有源探测仿真模型,分析了实验海区负跃层条件下的传播损失和多途能量扩展损失,实现了双基地有源探测的性能预估。以模型仿真为基础,在南海北部海域开展了一次浅海双基地有源探测实验.针对定位中的声速与实验中目标回波的脉冲传播速度的偏差导致定位精度下降的问题,提出了一种目标回波脉冲传播速度近似估计方法。实验结果表明,双基地有源探测可在浅海负跃层条件下实现对水中目标的有效探测,多个实验站位的回波信噪比实测值与仿真预测值符合较好,定位声速近似估计方法可进一步提高定位精度。
        In order to estimate the capability of bistatic active detection based on a stationary horizontal array and flexible source in shallow water environment,a bistatic active signal simulator is developed.Further,the transmission losses and energy spreading losses are analyzed and the capability of bistatic active detection in shallow water environment is estimated.An experiment was conducted in the South China Sea according to the predicted detection range.The bias between the selected reference sound velocity and the pulse propagation velocity of the target echo degrades the positioning accuracy.An approximate method for the pulse velocity estimation is proposed to reduce the positioning error caused by the bias.Experimental results show that bistatic active detection can effectively detect target in negative thermocline environment,the estimated SNR(Signal-to-Noise Ratio)with the simulator are reliable,and the positioning accuracy can be improved by using estimated pulse velocity.
引文
1 Cox H.Fundamentals of bistatic active sonar//Underwater acoustic data processing.Springer,1989:3—24
    2 Abraham D A,Willett P K.Active sonar detection in shallow water using the Page test.IEEE J.Oceanic Eng., 2002;27(1):53-46
    3 HAO Chengpeng,SHI Bo,XU Da,CHEN Dong,ZHU Dongsheng.Durbin test with enhanced detection performance to mismatched signal.Chinese Journal of Acoustics,2016; 35(4):406—415
    4 Yang J,Sarkar T K.Doppler invariant property of hyperbolic frequency modulated waveforms.Microwave Opt.Technol.Lett.,2006;48(6):1174—1179
    5 Pecknold S P,Renaud W M,McGaughey D R et al.Improved active sonar performance using Costas waveforms.IEEE J.Oceanic Eng.,2009; 34(4):559—574
    6任仕伟,鄢社锋,马晓川.Costas编码跳频信号多普勒容限及其在多声源宽带正交检测中的应用.声学学报,2014; 39(2):154—162
    7王宁,高大治,王好忠.频散、声场干涉结构、波导不变量与消频散变换.哈尔滨工程大学学报,2010; 31(7):825-831
    8徐传秀,朴胜春,杨士莪,张海刚,唐骏.采用能量守恒和高阶Pade近似的三维水声抛物方程模型.声学学报,2016; 41(4):477—484
    9赵俊渭,赵日昌.收发分置水下目标声散射特征的实验研究.声学学报,1997; 22(2):123-131
    10马黎黎,王仁乾,项海格.收发分置目标强度的计算及前向散射信号的分离.声学学报,2009; 34(6):481-489
    11雷波,杨益新,何传林.等声速环境中目标前向声散射简正波耦合的垂直阵空域响应特征.声学学报,2018;43(4):471-480
    12 Xu L,Li J,Jain A.Impact of strong direct blast on active sonar systems.IEEE Trans.Aerosp.Electron.Syst.,2015; 51(2):894-909
    13刘建军,李风华,张仁和.浅海异地混响理论与实验比较.声学学报,2006; 31(2):173—178
    14王晓宇,杨益新,卓颉.浅海波导中水平接收阵被动时反混响抑制方法研究.声学学报,2013; 38(2):21-28
    15 Sandys-Wunsch M,Hazen M G.Multistatic localization error due to receiver positioning errors.IEEE J.OceanicEng.,2002; 27(2):328-334
    16 Coraluppi S.Multistatic sonar localization.IEEE J.Oceanic Eng.,2006; 31(4):964—974
    17 Kim S,Ku B,Hong W et al.Performance comparison of target localization for active sonar systems.IEEE Trans.Aerosp.Electron.Syst.,2008; 44(4):1371—1380
    18 Peters D J.A bayesian method for localization by multistatic active sonar.IEEE J.Oceanic Eng.,2017; 42(1):135-142
    19 YAN Sheng,WEI Xiaojun,HAO Chengpeng,MA Hui,YAN Shefeng.Target localization and parameters estimation by sonar system with explosions as underwater sound sources.Chinese Jou-rnal of Aco-ustics,2016; 35(4):416—430
    20 Ren Y,Zhang R H,Wang J et al.Stability and a fast calculation method of travel speed of pulse peak in convergence zone.Sci.China:Phys.Mech.Astro-n.,2014;57(7):1274-1282
    21 He C,Quijano J E,Zurk L M.Enhanced Kalman filter algorithm using the invariance principle.IEEE J.Oceanic Eng.,2009; 34(4):575-585
    22 Orlando D,Ehlers F.Advances in multistatic sonar.Sonar systems.IntechOpen,2011
    23 Murphy S M,Scrutton J G E,Hines P C.Experimental implementation of an echo repeater for continuous active sonar.IEEE J.Oceanic Eng.,2009; 42(2):289—297
    24 Schecklman S,Zurk L M.Extraction of striations from continuous active sonar(CAS)data.OCEANS'15,IEEE,Genoa,Italy,2015:1—7
    25刘大利.水下连续波有源探测的目标回波有源检测算法.声学学报,2014;39(2):163—169
    26杨丽,蔡志明.混响背景下双基地声呐的探测范围分析.哈尔滨工程大学学报,2006; 27(4):257-601
    27 Fewell M P,Ozols S.Simple detection-performance analysis of multistatic sonar for anti-submarine warfare(Tech.Rep.No.DSTO-TR-2562).Edinburgh,South Australia:Defence Science and Technology Organisation,2011.
    28 Craparo E M,Fugenschuh A,Hof C et al.Optimizing source and receiver placement in multistatic sonar networks to monitor fixed targets.Eur.J.Oper.Res.,2019;272(3):816—831
    29 Jensen F B,Kuperman W A,Porter M B et al.Computational ocean acoustics.Springer,2000:337-341
    30龚家元,安俊英,马力,徐海亭.边界元奇异与近奇异数值积分方法及其应用于大规模声学问题.声学学报,2016; 41(5):768—775
    31宫在晓,张仁和,李秀林,吴立新.浅海脉冲声传播及信道匹配实验研究.声学学报,2005; 30(2):108-114
    32 Hermand J P,Roderick W I.Acoustic model-based matched filter processing for fading time-dispersive ocean channels:Theory and experiment.IEEE J.Oceanic Eng.,1993; 18(4):447-465
    33李整林,张仁和.孤立子内波引起的高号简正波到达时间起伏.声学学报,2011; 36(6):559—567
    34李整林,王耀俊,马力,高天赋.海底沉积物参数对浅海中低频声传播的影响.声学学报,2000; 25(3):242-247

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700