图形化蓝宝石衬底上有序微米半球形SnO_2的生长、结构和光学特性研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Growth,structural and optical properties of orderly SnO_2 microhemispheres on patterned sapphire substrates
  • 作者:冯秋菊 ; 潘德柱 ; 邢研 ; 石笑驰 ; 杨毓琪 ; 李芳 ; 李彤彤 ; 郭慧颖 ; 梁红伟
  • 英文作者:Feng Qiu-Ju;Pan De-Zhu;Xing Yan;Shi Xiao-Chi;Yang Yu-Qi;Li Fang;Li Tong-Tong;Guo Hui-Ying;Liang Hong-Wei;School of Physics and Electronic Technology,Liaoning Normal University;School of Physics and Optoelectronic Engineering,Dalian University of Technology;
  • 关键词:化学气相沉积 ; 图形化衬底 ; SnO2 ; 微米半球
  • 英文关键词:chemical vapor deposition;;patterned sapphire substrate;;SnO2;;microhemisphere
  • 中文刊名:WLXB
  • 英文刊名:Acta Physica Sinica
  • 机构:辽宁师范大学物理与电子技术学院;大连理工大学物理与光电工程学院;
  • 出版日期:2016-12-30 09:44
  • 出版单位:物理学报
  • 年:2017
  • 期:v.66
  • 基金:国家自然科学基金(批准号:11405017,61574026);; 辽宁省自然科学基金(批准号:201602453,2014020004)资助的课题~~
  • 语种:中文;
  • 页:WLXB201703028
  • 页数:6
  • CN:03
  • ISSN:11-1958/O4
  • 分类号:329-334
摘要
利用化学气相沉积法,在图形化蓝宝石衬底上,无需引入催化剂,通过改变反应源锡粉量生长出了不同尺寸、规则排列的有序微米半球形SnO_2.测试结果表明,微米半球形SnO_2呈选择性生长特性,并且随着反应源锡粉量的增加,微米半球的直径逐渐增大,结晶质量变差.此外,随着锡粉量的增加,在吸收谱中还观测到了吸收边的红移现象.这种选用图形化衬底的制备方法为制备高密度、有序排列的SnO_2微/纳米结构提供了一种可行和有效的方法.
        One-dimensional nanoscaled materials, such as nanotubes, nanowires and nanobelts, have attracted a great deal of attention in recent years because of their unique electronic, optical, and mechanical properties. Their potential applications are found in next generation devices, functional materials, and sensors. A material of particular interest is stannic oxide(SnO_2), which is a novel oxide semiconductor material for ultraviolet and blue luminescence devices due to its wide band gap of 3.6 eV at room temperature. SnO_2 can also be widely used in many fields, such as gas sensors,optoelectronic devices, and transparent conductive glass, because of its high optical transparency in the visible range,low resistivity, and higher chemical and physical stability. In recent years, one-dimensional nanostructures of SnO_2 materials, such as nanobelts, nanotubes, and nanowires, have been reported. However, the preparations of orderly SnO_2 micro/nanostructures have been rarely reported. In this paper, orderly SnO_2 microhemispheres with different sizes are grown on patterned sapphire substrates by a traditional chemical vapor deposition method without using any catalyst.The patterned sapphire substrates are cleaned by using a standard sapphire wafer cleaning procedure. High-purity metallic Sn powders(99.99%) and oxygen gas are used as Sn and oxygen sources, respectively. The flow rate of highpurity Ar carrier gas is controlled at 200 sccm, and the oxygen reactant gas with a flow rate of 100 sccm is introduced into the system. In the growth process, the whole system is kept at 1000℃ for 30 min. The surface morphologies, structural and optical properties of the SnO_2 microhemispheres are investigated by the field emission scanning electron microscope(HITACHI S4800), the X-ray diffraction with a Cu Kαradiation(0.15418 nm), the optical absorption spectroscope(UV-3600 UV-VIS-NIR, Shimadzu), and the photoluminescence spectroscope with an excitation source of He-Cd laser(λ = 325 nm) to identify the As related acceptor emission, respectively. These results show that the diameters of SnO_2 microhemispheres become larger, and the crystal quality is degraded with the increase of Sn powder mass. The special selective growth of SnO_2 microhemisphere on a patterned sapphire substrate is found. In addition, we also find that the optical band gaps of the samples A–D are all redshifted with the increase of Sn powder mass. The shrinkage of E_g in the absorption spectrum should be partly attributed to the degradation of crystal quality because of excess Sn sources.This growth method of SnO_2 microhemisphere provides a feasible and effective way of preparing the high density, orderly arrangement of SnO_2 micro/nanostructures.
引文
[1]Wang Y H,Ma J,Ji F,Yu X H,Zhang X J,Ma H L2005 Acta Phys.Sin.54 1731(in Chinese)[王玉恒,马瑾,计峰,余旭浒,张锡健,马洪磊2005物理学报54 1731]
    [2]Ji Z G,He Z J,Song Y L 2004 Acta Phys.Sin.53 4330(in Chinese)[季振国,何振杰,宋永梁2004物理学报534330]
    [3]Sun J W,Lu Y M,Liu Y C,Shen D Z,Zhang Z Z,Li B H,Zhang J Y,Yao B,Zhao D X,Fan X W 2006 Solid State Commun.140 345
    [4]Feng Q J,Liu Y,Pan D Z,Yang Y Q,Liu J Y,Mei Y Y,Liang H W 2015 Acta Phys.Sin.64 248101(in Chinese)[冯秋菊,刘洋,潘德柱,杨毓琪,刘佳媛,梅艺赢,梁红伟2015物理学报64 248101]
    [5]Rogersa D J,Teherani F H,Yasan A,Minder K,Kung P,Razeghi M 2006 Appl.Phys.Lett.88 141918
    [6]Tang X B,Li G M,Zhou S M 2013 Nano Lett.13 5046
    [7]Feng Q J,Liang H W,Mei Y Y,Liu J Y,Ling C C,Tao P C,Pan D Z,Yang Y Q 2015 J.Mater.Chem.C 34678
    [8]Li P G,Lei M,Wang X,Tang W H 2009 Mater.Lett.63 357
    [9]Xie X,Shao Z,Yang Q,Shen X,Zhu W,Hong X,Wang G 2012 J.Solid State Chem.191 46
    [10]Tao T,Chen Q Y,Hu H P,Chen Y 2011 Mater.Chem.Phys.126 128
    [11]Zhong W W,Liu F M,Cai L G,Zhou C C,Ding P,Zhang H 2010 J.Alloys Compd.499 265
    [12]Zhao J,Liang H,Sun J,Feng Q,Li S,Bian J,Hu L,Du G,Ren J,Liu J 2011 Phys.Status Solidi A 208 825
    [13]Luo S,Fan J,Liu W,Zhang M,Song Z,Lin C,Wu X,Chu P K 2006 Nanotechnology 17 1695
    [14]Kar A,Stroscio M A,Dutta M,Kumari J,Meyyappan M 2009 Appl.Phys.Lett.94 101905
    [15]Chen H T,Xiong S J,Wu X L Zhu J,Shen J C,Chu P K 2009 Nano Lett.9 1926

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700