H_2SO_4改性凹凸棒土在葡萄糖脱水制备5-羟甲基糠醛过程中的催化性能研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on catalytic performance of H_2SO_4 modified attapulgite in the process of dehydration of glucose to prepare 5-hydroxymethylfurfural
  • 作者:杨凤丽 ; 梁国斌 ; 顾宇阳
  • 英文作者:YANG Fengli;LIANG Guobin;GU Yuyang;Technology School of Chemical and Environmental Engineering,Jiangsu University of Technology;
  • 关键词:H2SO4改性 ; 凹凸棒土 ; 5-羟甲基糠醛 ; 固体酸催化剂
  • 英文关键词:sulfuric acid modification;;attapulgite;;5-hydroxymethylfurfural;;solid acid catalyst
  • 中文刊名:ZZQB
  • 英文刊名:Journal of Light Industry
  • 机构:江苏理工学院化学与环境工程学院;
  • 出版日期:2019-01-21 10:58
  • 出版单位:轻工学报
  • 年:2019
  • 期:v.34;No.155
  • 基金:国家自然科学基金项目(21406020);; 江苏省科技厅资助项目(BK20140257)
  • 语种:中文;
  • 页:ZZQB201901010
  • 页数:7
  • CN:01
  • ISSN:41-1437/TS
  • 分类号:70-76
摘要
对经H2SO4改性的凹凸棒土作为固体酸催化剂时,其在葡萄糖脱水制备生物基平台化合物5-羟甲基糠醛(HMF)过程中的催化性能进行研究,结果表明:凹凸棒土经不同浓度H2SO4改性后,Bronsted酸位点显著增加,当H2SO4浓度为1. 0 mol/L时,同时具有较多的Bronsted酸位点和Lewis酸位点,此时催化葡萄糖脱水制备HMF效果最好,其收率可达46. 6%.该催化剂在含水体系中表现出良好的稳定性,催化剂重复使用4次,HMF收率均在46%以上,活性未发生明显改变.
        The attapulgite modified by H2 SO4 was used as a solid acid catalyst to study the dehydration of the bio-based platform compound 5-hydroxymethylfurfural( HMF). The results showed that the Bronsted acid sites increased when the attapulgite was modified by different concentrations of H2 SO4. When the concentration of H2 SO4 was 1. 0 mol/L,there were more Bronsted acid sites and Lewis acid sites. The preparation of HMF had the best effect,and the yield could reach 46. 6%. The catalyst showed good stability in the aqueous system.Repeated use of the catalyst for 4 times,the HMF yield was above 46%,and the activity did not change significantly.
引文
[1] CLIMENT M J,CORMA A,IBORRA S. Converting carbohydrates to bulk chemicals and fine chemicals over heterogeneous catalysts[J].Green Chemistry,2011,13(3):520.
    [2] CLIMENT M J,CORMA A,IBORRA S. Heterogeneous catalysts for the one-pot synthesis of chemicals and fine chemicals[J]. Chemical Reviews,2011,111(2):1072.
    [3] BINDER J B,RAINES R T. Simple chemical transformation of lignocellulosic biomass into furans for fuels and chemicals[J]. Journal of the American Chemical Society,2009,131(5):1979.
    [4] TAARNING E,OSMUNDSEN C M,YANG X B,et al. Zeolite-catalyzed biomass conversion to fuels and chemicals[J]. Energy&Environmental Science,2011,4(3):793.
    [5] GAO T Q,GAO T Y,FANG W H,et al. Basefree aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid in water by hydrotalcite-activated carbon composite supported gold catalyst[J]. Molecular Catalysis,2017,439:171.
    [6] YANG C F,HUANG C R. Biotransformation of5-hydroxy-methylfurfural into 2,5-furan-dicarboxylic acid by bacterial isolate using thermal acid algal hydrolysate[J]. Bioresource Technology,2016,214:311.
    [7] GALLEZOT P. Conversion of biomass to selected chemical products[J]. Chemical Society Reviews,2012,41(4):1538.
    [8] VERENDEL J J,CHURCH T L,ANDERSSON P G. Catalytic one-pot production of small organics from polysaccharides[J]. SynthesisStuttgart,2011(11):1649.
    [9] YU I K M,TSANG D C W. Conversion of biomass to hydroxymethylfurfural:A review of catalytic systems and underlying mechanisms[J].Bioresource Technology,2017,238:716.
    [10] MIKA L T,CSEFALVAY E,NEMETH A. Catalytic conversion of carbohydrates to initial platform chemicals:chemistry and sustainability[J]. Chemical Reviews,2018,118(2):505.
    [11] DONOEVA B,MASOUD N,DE JONGH P E.Carbon support surface effects in the gold-catalyzed oxidation of 5-hydroxymethylfurfural[J].Acs Catalysis,2017,7(7):4581.
    [12] GAAZ T S,SULONG A,KADHUM A A H,et al.Impact of sulfuric acid treatment of halloysite on physico-chemic property modification[J]. Materials,2016,9(8):16.
    [13] GARCIA-SANCHO C,FUNEZ-NUNEZ I,MORENO-TOST R,et al. Beneficial effects of calcium chloride on glucose dehydration to5-hydroxymethylfurfural in the presence of alumina as catalyst[J]. Applied Catalysis B:Environmental,2017,206:617.
    [14] LI X Y,JIANG Y,LIU X Q,et al. Direct synthesis of zeolites from a natural clay,attapulgite[J]. Acs Sustainable Chemistry&Engineering,2017,5(7):6124.
    [15] WANG Y Z,SHI J,WU R F,et al. Roomtemperature CO oxidation over calcined Pd-Cu/palygorskite catalysts[J]. Applied Clay Science,2016,119:126.
    [16] ZHANG Z F,WANG W B,WANG A Q. Highly effective removal of methylene blue using functionalized attapulgite via hydrothermal process[J].Journal of Environmental Sciences,2015,33:106.
    [17] ZHENG J J,CHEN J J,SHAO H,et al. Synthesis of MeSAPO-11 zeolites from attapulgite for dehydration of carbohydrates to HMF[J]. Journal of Renewable and Sustainable Energy,2017,9(6):9.
    [18] CHEN J J,YU Y,CHEN J Y,et al. Chemical modification of palygorskite with maleic anhydride modified polypropylene:mechanical properties,morphology,and crystal structure of palygorskite/polypropylene nanocomposites[J]. Applied Clay Science,2015,115:230.
    [19] ZHANG Z H,LIANG H J,DU X G,et al. H2S removal:correlation between performance and loading species of Zn-Fe/attapulgite[J]. Environmental Progress&Sustainable Energy,2014,33(2):378.
    [20] ROMAN-LESHKOV Y,CHHEDA J N,DUMESIC J A. Phase modifiers promote efficient production of hydroxymethylfurfural from fructose[J]. Science,2006,312(5782):1933.
    [21] CHAREONLIMKUN A,CHAMPREDA V,SHOTIPRUK A,et al. Catalytic conversion of sugarcane bagasse,rice husk and corncob in the presence of Ti O2,Zr O2and mixed-oxide Ti O2-Zr O2under hot compressed water(HCW)condition[J]. Bioresource Technology,2010,101(11):4179.
    [22] WATANABE M,AIZAWA Y,IIDA T,et al. Catalytic glucose and fructose conversions with Ti O2and Zr O2in water at 473 K:relationship between reactivity and acid-base property determined by TPD measurement[J]. Applied Catalysis A:General,2005,295(2):150.
    [23] CARNITI P,GERVASINI A,BOSSOLA F,et al. Cooperative action of Bronsted and Lewis acid sites of niobium phosphate catalysts for cellobiose conversion in water[J]. Applied Catalysis B:Environmental,2016,193:93.
    [24] KREISSL H T,NAKAGAWA K,PENG Y K,et al. Niobium oxides:correlation of acidity with structure and catalytic performance in sucrose conversion to 5-hydroxymethylfurfural[J]. Journal of Catalysis,2016,338:329.
    [25] JIAO H F,ZHAO X L,LV C X,et al. Nb2O5-gamma-Al2O3nanofibers as heterogeneous catalysts for efficient conversion of glucose to5-hydroxymethylfurfural[J]. Scientific Reports,2016,6:34068.
    [26] YUE C C,LI G N,PIDKO E A,et al. Dehydration of glucose to 5-hydroxymethylfurfural using Nb-doped tungstite[J]. Chemsuschem,2016,9(17):2421.
    [27] SUGANUMA S,NAKAJIMA K,HARA M,et al.Hydrolysis of cellulose by amorphous carbon bearing SO3H,COOH,and OH groups[J]. Journal of the American Chemical Society,2008,130(38):12787.
    [28]朱丽伟,王建刚,赵萍萍,等. Nb-P/SBA-15催化剂的制备及其对果糖水解制5-羟甲基糠醛的催化性能[J].燃料化学学报,2017,45(6):651.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700