石墨烯-纳米银修饰电极检测过氧化氢
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Electrochemical Detection of Hydrogen Peroxide by Silver Nanoparticles-Reduced Graphene Modified Electrode
  • 作者:何锦强 ; 万俊杰
  • 英文作者:HE Jin-qiang;WAN Jun-jie;College of Environmental Engineering,Guangdong Industry Polytechnic;
  • 关键词:还原氧化石墨烯 ; 纳米银颗粒 ; 过氧化氢 ; 电化学分析 ; 有机电化学与工业
  • 英文关键词:reduced graphene oxide;;silver nanoparticles;;hydrogen peroxide;;electrochemical analysis
  • 中文刊名:JXHG
  • 英文刊名:Fine Chemicals
  • 机构:广东轻工职业技术学院生态环境技术学院;
  • 出版日期:2018-01-15
  • 出版单位:精细化工
  • 年:2018
  • 期:v.35
  • 基金:广东轻工职业技术学院珠江学者人才类项目(RC2015-001)~~
  • 语种:中文;
  • 页:JXHG201801015
  • 页数:6
  • CN:01
  • ISSN:21-1203/TQ
  • 分类号:99-104
摘要
以氧化石墨烯(GO)和硝酸银为原料,通过共合成法,制备了还原氧化石墨烯负载纳米银颗粒(AgNPs-rGO)复合物,并将AgNPs-rGO复合物修饰在碳糊电极(CPE)上,制得AgNPs-rGO/CPE电极。通过XRD、SEM和EDS技术对AgNPs-rGO的结构进行了表征与测试。结果表明,AgNPs很好地负载在了rGO上,且银元素的质量分数高达50.57%。当硝酸银浓度为0.02 mol/L时,AgNPs-rGO/CPE电极表现出最佳的电化学性能。在pH=5.5的磷酸盐缓冲溶液中,对过氧化氢在AgNPs-rGO/CPE电极上的电化学行为进行了考察。结果表明,AgNPs-rGO/CPE对过氧化氢的电化学检测表现出良好的稳定性,相对标准偏差仅为3.7%。当过氧化氢的浓度在1.0×10~(-8)~1.0×10~(-6)mol/L范围内时,过氧化氢的响应电流值ΔI与其浓度对数lgc呈现良好的线性关系,线性相关系数R~2高达0.993 4。将其应用于自来水样品中的过氧化氢检测,得到的加标回收率达到97.1%,多次重复检测的相对标准偏差仅为4.7%,表明制备的AgNPs-rGO/CPE对过氧化氢的电化学检测具有良好的重现性和稳定性。
        Silver nanoparticles( AgNPs)-reduced graphene oxide( AgNPs-rGO) composite was prepared by co-synthesized,and then it was introduced into carbon paste electrode( CPE) to prepare AgNPs-rGO/CPE electrode. The resulting AgNPs-rGO composite was characterized by XRD,SEM and EDS. The results indicated AgNPs was well loaded on rGO and the mass fraction of silver element was up to 50. 57%. When the amount of silver nitrate was 0. 02 mol/L,the AgNPs-rGO/CPE electrode showed the best electrochemical performance. The electrochemical behavior of hydrogen peroxide at AgNPs-rGO/CPE electrode was investigated in pH = 5. 5 phosphate buffer solution. As a result,this electrode exhibited a good stability for the electrochemical determination of hydrogen peroxide with a relative standard deviation( RSD) of 3. 7%.When the concentration of hydrogen peroxide was within the range of 1.0 × 10~(-8)~ 1. 0 × 10~(-6)mol/L,the electrochemical current of hydrogen peroxide increased linearly with the concentration of hydrogen peroxide( R~2= 0. 9934). The electrode for the detection of hydrogen peroxide in drinking water was developed. The recovery rate and RSD in drinking water sample were 97. 1% and 4. 7%,respectively. The results revealed that the prepared AgNPs-rGO/CPE electrode could be used for electrochemical detection of hydrogen peroxide with excellent reproducibility and stability.
引文
[1]Pardieck D,Bouwer E,Stone A.Hydrogen peroxide use to increase oxidant capacity for in situ bioremediation of contaminated soils and aquifers:A review[J].Journal of Contaminant Hydrology,1992,9(3):221-242.
    [2]Tredwin C,Naik S,Lewis N,et al.Hydrogen peroxide toothwhitening(bleaching)products:Review of adverse effects and safety issues[J].British Dental Journal,2006,200(7),371-376.
    [3]Chen W,Cai S,Ren Q,et al.Recent advances in electrochemical sensing for hydrogen peroxide:a review[J].Analyst,2012,137(1),49-58.
    [4]Kiba N,Tokizawa T,Kato S J,et al.Flow-through micro sensor using immobilized peroxidase with chemiluminometric FIA system for determining hydrogen peroxide[J].Analytical Sciences,2003,19(6):823-827.
    [5]Zhang L,Wong G.Optimal conditions and sample storage for the determination of H2O2in marine waters by the scopoletinhorseradish peroxidase fluorometric method[J].Talanta,1999,48(5):1031-1038.
    [6]Fan Huafeng(范华峰),Zhang Zhongyi(张忠义),Liu Zhenlin(刘振林).Spectrophotometric determination of hydrogen peroxide in food[J].Chinese Journal of Health laboratory Technology(中国卫生检验杂志),2006,16(9):1079-1080.
    [7]Deng Zifeng(邓子峰),Zhang Hongwei(张洪伟),Jiao Yuzhu(焦玉珠).Hydrogen peroxide biosensor based on cytochrome C/Zinc Oxide[J].Chinese Journal of Analytical Chemistry(分析化学),2007,35(7):1011-1014.
    [8]Wang L,Wang E.A novel hydrogen peroxide sensor based on horseradish peroxidase immobilized on colloidal Au modified ITO electrode[J].Electrochemistry Communication,2004,6(2):225-229.
    [9]Song M,Hwang S,Whang D.Non-enzymatic electrochemical Cu O nanoflowers sensor for hydrogen peroxide detection[J].Talanta,2010,5(80):1648-1652.
    [10]Ye Wenyu(叶文玉),Zhang Fute(张付特),Lu Peizhong(路培中),et al.Preparation and tribological properties of surface modified Ag nanoparticles[J].Fine Chemicals(精细化工),2007,24(9):863-866.
    [11]Wu Fengci(吴凤慈),Liu Dongzhi(刘东志),Zhou Xueqin(周雪琴),et al.Green synthesis of amino acid functionalized silver nanoparticles and their conductivity[J].Fine Chemicals(精细化工),2015,32(9):980-984.
    [12]Yadav D K,Gupta R,Ganesan V,et al.Electrochemical sensing platform for hydrogen peroxide determination at low reduction potential using silver nanoparticle-incorporated bentonite clay[J].Journal of Applied Electrochemistry,2016,46(1):103-112.
    [13]Yin Y,Shen M,Tan Z,et al.Particle coating-dependent interaction of molecular weight fractionated natural organic matter:impacts on the aggregation of silver nanoparticles[J].Environmentalence&Technology,2015,49(11):6581-6589.
    [14]Duan S,Rui Y,Huang Y.Polyethylenimine-carbon nanotubes composite as an electrochemical sensing platform for silver nanoparticles[J].Talanta,2016,160:607-613.
    [15]Cloake S J,Toh H S,Lee P T,et al.Anodic stripping voltammetry of silver nanoparticles:aggregation leads to incomplete stripping[J].Chemistry Open,2015,4(1):22-26.
    [16]Allen M,Tung V,Kaner R.Honeycomb carbon:a review of graphene[J].Chemical Review,2009,110(1):132-145.
    [17]Stankovich S,Dikin D,Dommett G,et al.Graphenebased composite materials[J].Nature,2006,442(7100):282-286.
    [18]Gomez-Navarro C,Weitz R,Kern K.Electronic transport properties of individual chemically reduced graphene oxide sheets[J].Nano Letter,2007,7(11):3499-3503.
    [19]Chen Y,Zhu Q,Tsumori N,et al.Immobilizing highly catalytically active noble metal nanoparticles on reduced graphene oxide:A non-noble metal sacrificial approach[J].Journal of the American Chemical Society,2015,137(1):106-109.
    [20]Marcano D C,Kosynkin D V,Berlin J M,et al.Improved synthesis of graphene oxide[J].ACS nano,2010,4(8):4806-4814.
    [21]Khan M E,Khan M M,Cho M H.Biogenic synthesis of a Aggraphene nanocomposite with efficient photocatalytic degradation,electrical conductivity and photoelectrochemical performance[J].New Journal of Chemistry,2015,39(10):8121-8129.
    [22]Wei Y,Zuo X,Li X,et al.Dry plasma synthesis of graphene oxide-Ag nanocomposites:A simple and green approach[J].Materials Research Bulletin,2014,53:145-150.
    [23]Zhu Ling(朱玲).Discussion on the content determination of the commercial product-hydrogen peroxide[J].Anhui Chemical Industry(安徽化工),2002,(6):45-46.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700